55 resultados para STATIONARY SECTORIAL SAMPLER

em Cambridge University Engineering Department Publications Database


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Campylobacter jejuni is a prevalent cause of food-borne diarrhoeal illness in humans. Understanding of the physiological and metabolic capabilities of the organism is limited. We report a detailed analysis of the C. jejuni growth cycle in batch culture. Combined transcriptomic, phenotypic and metabolic analysis demonstrates a highly dynamic 'stationary phase', characterized by a peak in motility, numerous gene expression changes and substrate switching, despite transcript changes that indicate a metabolic downshift upon the onset of stationary phase. Video tracking of bacterial motility identifies peak activity during stationary phase. Amino acid analysis of culture supernatants shows a preferential order of amino acid utilization. Proton NMR (1H-NMR) highlights an acetate switch mechanism whereby bacteria change from acetate excretion to acetate uptake, most probably in response to depletion of other substrates. Acetate production requires pta (Cj0688) and ackA (Cj0689), although the acs homologue (Cj1537c) is not required. Insertion mutants in Cj0688 and Cj0689 maintain viability less well during the stationary and decline phases of the growth cycle than wild-type C. jejuni, suggesting that these genes, and the acetate pathway, are important for survival.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We use reversible jump Markov chain Monte Carlo (MCMC) methods to address the problem of model order uncertainty in autoregressive (AR) time series within a Bayesian framework. Efficient model jumping is achieved by proposing model space moves from the full conditional density for the AR parameters, which is obtained analytically. This is compared with an alternative method, for which the moves are cheaper to compute, in which proposals are made only for new parameters in each move. Results are presented for both synthetic and audio time series.