8 resultados para STATE PROTON-TRANSFER

em Cambridge University Engineering Department Publications Database


Relevância:

80.00% 80.00%

Publicador:

Resumo:

Hybrid quantum mechanics/molecular mechanics (QM/MM) simulations provide a powerful tool for studying chemical reactions, especially in complex biochemical systems. In most works to date, the quantum region is kept fixed throughout the simulation and is defined in an ad hoc way based on chemical intuition and available computational resources. The simulation errors associated with a given choice of the quantum region are, however, rarely assessed in a systematic manner. Here we study the dependence of two relevant quantities on the QM region size: the force error at the center of the QM region and the free energy of a proton transfer reaction. Taking lysozyme as our model system, we find that in an apolar region the average force error rapidly decreases with increasing QM region size. In contrast, the average force error at the polar active site is considerably higher, exhibits large oscillations and decreases more slowly, and may not fall below acceptable limits even for a quantum region radius of 9.0 A. Although computation of free energies could only be afforded until 6.0 A, results were found to change considerably within these limits. These errors demonstrate that the results of QM/MM calculations are heavily affected by the definition of the QM region (not only its size), and a convergence test is proposed to be a part of setting up QM/MM simulations.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In this Letter, the rarefaction and roughness effects on the heat transfer process in gas microbearings are investigated. A heat transfer model is developed by introducing two-variable Weierstrass-Mandelbrot (W-M) function with fractal geometry. The heat transfer problem in the multiscale self-affine rough microbearings at slip flow regime is analyzed and discussed. The results show that rarefaction has more significant effect on heat transfer in rough microbearings with lower fractal dimension. The negative influence of roughness on heat transfer found to be the Nusselt number reduction. The heat transfer performance can be optimized with increasing fractal dimension of the rough surface. © 2012 Elsevier B.V. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The yrast sequence of the neutron-rich dysprosium isotope Dy168 has been studied using multinucleon transfer reactions following collisions between a 460-MeV Se82 beam and an Er170 target. The reaction products were identified using the PRISMA magnetic spectrometer and the γ rays detected using the CLARA HPGe-detector array. The 2+ and 4+ members of the previously measured ground-state rotational band of Dy168 have been confirmed and the yrast band extended up to 10+. A tentative candidate for the 4+→2+ transition in Dy170 was also identified. The data on these nuclei and on the lighter even-even dysprosium isotopes are interpreted in terms of total Routhian surface calculations and the evolution of collectivity in the vicinity of the proton-neutron valence product maximum is discussed. © 2010 The American Physical Society.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

α-(Yb1-xErx)2Si2O7 thin films on Si substrates were synthesized by magnetron co-sputtering. The optical emission from Er3+ ions has been extensively investigated, evidencing the very efficient role of Yb-Er coupling. The energy-transfer coefficient was evaluated for an extended range of Er content (between 0.2 and 16.5 at.%) reaching a maximum value of 2 × 10⁻¹⁶ cm⁻³s⁻¹. The highest photoluminescence emission at 1535 nm is obtained as a result of the best compromise between the number of Yb donors (16.4 at.%) and Er acceptors (1.6 at.%), for which a high population of the first excited state is reached. These results are very promising for the realization of 1.54 μm optical amplifiers on a Si platform.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The power-conversion efficiency of solid-state dye-sensitized solar cells can be optimized by reducing the energy offset between the highest occupied molecular orbital (HOMO) levels of dye and hole-transporting material (HTM) to minimize the loss-in-potential. Here, we report a study of three novel HTMs with HOMO levels slightly above and below the one of the commonly used HTM 2,2′,7,7′- tetrakis(N,N-di-p-methoxyphenylamino)-9,9′- spirobifluorene (spiro-OMeTAD) to systematically explore this possibility. Using transient absorption spectroscopy and employing the ruthenium based dye Z907 as sensitizer, it is shown that, despite one new HTM showing a 100% hole-transfer yield, all devices based on the new HTMs performed worse than those incorporating spiro-OMeTAD. We further demonstrate that the design of the HTM has an additional impact on the electronic density of states present at the TiO2 electrode surface and hence influences not only hole- but also electron-transfer from the sensitizer. These results provide insight into the complex influence of the HTM on charge transfer and provide guidance for the molecular design of new materials. © 2013 American Chemical Society.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Solid-state dye-sensitized solar cells rely on effective infiltration of a solid-state hole-transporting material into the pores of a nanoporous TiO 2 network to allow for dye regeneration and hole extraction. Using microsecond transient absorption spectroscopy and femtosecond photoluminescence upconversion spectroscopy, the hole-transfer yield from the dye to the hole-transporting material 2,2′,7,7′-tetrakis(N,N-di-p- methoxyphenylamine)-9,9'-spirobifluorene (spiro-OMeTAD) is shown to rise rapidly with higher pore-filling fractions as the dye-coated pore surface is increasingly covered with hole-transporting material. Once a pore-filling fraction of ≈30% is reached, further increases do not significantly change the hole-transfer yield. Using simple models of infiltration of spiro-OMeTAD into the TiO2 porous network, it is shown that this pore-filling fraction is less than the amount required to cover the dye surface with at least a single layer of hole-transporting material, suggesting that charge diffusion through the dye monolayer network precedes transfer to the hole-transporting material. Comparison of these results with device parameters shows that improvements of the power-conversion efficiency beyond ≈30% pore filling are not caused by a higher hole-transfer yield, but by a higher charge-collection efficiency, which is found to occur in steps. The observed sharp onsets in photocurrent and power-conversion efficiencies with increasing pore-filling fraction correlate well with percolation theory, predicting the points of cohesive pathway formation in successive spiro-OMeTAD layers adhered to the pore walls. From percolation theory it is predicted that, for standard mesoporous TiO2 with 20 nm pore size, the photocurrent should show no further improvement beyond an ≈83% pore-filling fraction. Solid-state dye-sensitized solar cells capable of complete hole transfer with pore-filling fractions as low as ∼30% are demonstrated. Improvements of device efficiencies beyond ∼30% are explained by a stepwise increase in charge-collection efficiency in agreement with percolation theory. Furthermore, it is predicted that, for a 20 nm pore size, the photocurrent reaches a maximum at ∼83% pore-filling fraction. © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.