65 resultados para SPONTANEOUS POLARIZATION
em Cambridge University Engineering Department Publications Database
Resumo:
A novel pair of the E- and Z-isomeric 1R,4R-2-(4-heptyloxyphenyl)-benzylidene-p-menthan-3-ones has been prepared and the influence of distinctions in their molecular geometry on macroscopic properties of liquid crystal systems with the induced supra-molecular helical structure has been studied. The significantly lower helical twisting power of the chiral Z-isomer in comparison with that of E- one has been confirmed in the case of induced cholesteric systems based on 4-pentyl-4-cyanobiphenyl. The phase behavior and ferroelectric characteristics have been investigated for smectic-C* compositions based on the eutectic mixture of the homological 4-hexyloxyphenyl-4'-hexyloxy- and 4-hexyloxyphenyl-4'-octyloxybenzoates containing the novel isomeric chiral dopants. The spontaneous polarisation of the opposite signs induced by the isomeric chiral components has been revealed for the compositions studied. Distinctions in phase states, absolute values of the spontaneous polarization, smectic tilt angle and rotation viscosity of the systems obtained are discussed.
Resumo:
Some 1R,4R-2-(4-phenylbenzylidene)-p-menthane-3-one derivatives containing the ether or ester linking group between benzene rings of the arylidene fragment have been studied as chiral dopants in ferroelectric liquid crystal systems based on the eutectic mixture (1:1) of two phenylbenzoate derivatives CmH2m+1OC6H4COOC6 H4OCnH2n+1 (n = 6; m = 8, 10). The ferroelectric properties of these compositions (spontaneous polarization, rotation viscosity, smectic tilt angle as well as quantitative characteristics of their concentration dependences) were compared with those for systems including chiral dopants containing no linking group. Ferroelectric parameters of the induced ferroelectric compositions studied have been shown to depend essentially on the presence of the linking group between benzene rings and its nature as well as on the number of the benzene rings in the rigid molecular core of the chiral dopants used. For all ferroelectric liquid crystal systems studied, the influence of the chiral dopants on the thermal stability of N*, SmA and SmC* mesophases has been quantified. The influence of the linking group nature in the dopant molecules on the characteristics of the systems studied is discussed taking into account results of the conformational analysis carried out by the semi-empirical AM1 and PM3 methods.
Resumo:
Mixtures of two proprietary low molar mass organosiloxane liquid crystals were studied in order to improve their alignment and optimize their electro-optic properties for telecommunication applications. Over a certain concentration range, mixtures exhibited an isotropic-chiral smectic A-chiral smectic C (Iso-SmA*-SmC*) phase sequence leading to exceptionally good alignment. At room temperature, the spontaneous polarization of these samples was reduced from 225 nC cm -2 in the pure SmC* liquid crystal to as low as 75 nC cm -2 in the mixture. Within this concentration range, the ferroelectric tilt angle could be varied between 35° and 15°, while the rise time decreased by 69.4%. The rise times were < 45 μs for moderate electric fields of ± 10 V μm -1 in the SmC* phase and ∼ 4 μs, independent of electric field, in the SmA* phase. At λ = 1550 nm, these mixtures exhibited very large extinction ratios of {\sim} 60 dB for binary switching in the SmC* phase and ∼ 55 dB continuous variable attenuation in the SmA* phase. © 2012 IEEE.
Resumo:
In this article, we investigate the spontaneous emission properties of radiating molecules embedded in a chiral nematic liquid crystal, under the assumption that the electronic transition frequency is close to the photonic edge mode of the structure, i.e., at resonance. We take into account the transition broadening and the decay of electromagnetic field modes supported by the so-called "mirrorless"cavity. We employ the Jaynes-Cummings Hamiltonian to describe the electron interaction with the electromagnetic field, focusing on the mode with the diffracting polarization in the chiral nematic layer. As known in these structures, the density of photon states, calculated via the Wigner method, has distinct peaks on either side of the photonic band gap, which manifests itself as a considerable modification of the emission spectrum. We demonstrate that, near resonance, there are notable differences between the behavior of the density of states and the spontaneous emission profile of these structures. In addition, we examine in some detail the case of the logarithmic peak exhibited in the density of states in two-dimensional photonic structures and obtain analytic relations for the Lamb shift and the broadening of the atomic transition in the emission spectrum. The dynamical behavior of the atom-field system is described by a system of two first-order differential equations, solved using the Green's-function method and the Fourier transform. The emission spectra are then calculated and compared with experimental data. © 2013 American Physical Society.
Resumo:
In this article, we investigate the spontaneous emission properties of radiating molecules embedded in a chiral nematic liquid crystal, under the assumption that the electronic transition frequency is close to the photonic edge mode of the structure, i.e., at resonance. We take into account the transition broadening and the decay of electromagnetic field modes supported by the so-called "mirrorless"cavity. We employ the Jaynes-Cummings Hamiltonian to describe the electron interaction with the electromagnetic field, focusing on the mode with the diffracting polarization in the chiral nematic layer. As known in these structures, the density of photon states, calculated via the Wigner method, has distinct peaks on either side of the photonic band gap, which manifests itself as a considerable modification of the emission spectrum. We demonstrate that, near resonance, there are notable differences between the behavior of the density of states and the spontaneous emission profile of these structures. In addition, we examine in some detail the case of the logarithmic peak exhibited in the density of states in two-dimensional photonic structures and obtain analytic relations for the Lamb shift and the broadening of the atomic transition in the emission spectrum. The dynamical behavior of the atom-field system is described by a system of two first-order differential equations, solved using the Green's-function method and the Fourier transform. The emission spectra are then calculated and compared with experimental data.