3 resultados para SPIN MODEL

em Cambridge University Engineering Department Publications Database


Relevância:

30.00% 30.00%

Publicador:

Resumo:

A one-dimensional analytical model is developed for the steady state, axisymmetric, slender flow of saturated powder in a rotating perforated cone. Both the powder and the fluid spin with the cone with negligible slip in the hoop direction. They migrate up the wall of the cone along a generator under centrifugal force, which also forces the fluid out of the cone through the powder layer and the porous wall. The flow thus evolves from an over-saturated paste at inlet into a nearly dry powder at outlet. The powder is treated as a Mohr-Coulomb granular solid of constant void fraction and permeability. The shear traction at the wall is assumed to be velocity and pressure dependent. The fluid is treated as Newtonian viscous. The model provides the position of the colour line (the transition from over- to under-saturation) and the flow velocity and thickness profiles over the cone. Surface tension effects are assumed negligible compared to the centrifugal acceleration. Two alternative conditions are considered for the flow structure at inlet: fully settled powder at inlet, and progressive settling of an initially homogeneous slurry. The position of the colour line is found to be similar for these two cases over a wide range of operating conditions. Dominant dimensionless groups are identified which control the position of the colour line in a continuous conical centrifuge. Experimental observations of centrifuges used in the sugar industry provide preliminary validation of the model. © 2011 Elsevier Ltd.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Rashba spin splitting is a two-dimensional (2D) relativistic effect closely related to spintronics. However, so far there is no pristine 2D material to exhibit enough Rashba splitting for the fabrication of ultrathin spintronic devices, such as spin field effect transistors (SFET). On the basis of first-principles calculations, we predict that the stable 2D LaOBiS2 with only 1 nm of thickness can produce remarkable Rashba spin splitting with a magnitude of 100 meV. Because the medium La2O2 layer produces a strong polar field and acts as a blocking barrier, two counter-helical Rashba spin polarizations are localized at different BiS 2 layers. The Rashba parameter can be effectively tuned by the intrinsic strain, while the bandgap and the helical direction of spin states sensitively depends on the external electric field. We propose an advanced Datta-Das SFET model that consists of dual gates and 2D LaOBiS2 channels by selecting different Rashba states to achieve the on-off switch via electric fields. © 2013 American Chemical Society.