11 resultados para SEGMENTED WORMLIKE MICELLES

em Cambridge University Engineering Department Publications Database


Relevância:

20.00% 20.00%

Publicador:

Resumo:

In human and animal running spring-like leg behavior is found, and similar concepts have been demonstrated by various robotic systems in the past. In general, a spring-mass model provides self-stabilizing characteristics against external perturbations originated in leg-ground interactions and motor control. Although most of these systems made use of linear spring-like legs. The question addressed in this paper is the influence of leg segmentation (i.e. the use of rotational joint and two limb-segments) to the self-stability of running, as it appears to be a common design principle in nature. This paper shows that, with the leg segmentation, the system is able to perform self-stable running behavior in significantly broader ranges of running speed and control parameters (e.g. control of angle of attack at touchdown, and adjustment of spring stiffness) by exploiting a nonlinear relationship between leg force and leg compression. The concept is investigated by using a two-segment leg model and a robotic platform, which demonstrate the plausibility in the real world. ©2008 IEEE.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

This paper addresses the problem of automatically obtaining the object/background segmentation of a rigid 3D object observed in a set of images that have been calibrated for camera pose and intrinsics. Such segmentations can be used to obtain a shape representation of a potentially texture-less object by computing a visual hull. We propose an automatic approach where the object to be segmented is identified by the pose of the cameras instead of user input such as 2D bounding rectangles or brush-strokes. The key behind our method is a pairwise MRF framework that combines (a) foreground/background appearance models, (b) epipolar constraints and (c) weak stereo correspondence into a single segmentation cost function that can be efficiently solved by Graph-cuts. The segmentation thus obtained is further improved using silhouette coherency and then used to update the foreground/background appearance models which are fed into the next Graph-cut computation. These two steps are iterated until segmentation convergences. Our method can automatically provide a 3D surface representation even in texture-less scenes where MVS methods might fail. Furthermore, it confers improved performance in images where the object is not readily separable from the background in colour space, an area that previous segmentation approaches have found challenging. © 2011 IEEE.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Pavement condition assessment is essential when developing road network maintenance programs. In practice, the data collection process is to a large extent automated. However, pavement distress detection (cracks, potholes, etc.) is mostly performed manually, which is labor-intensive and time-consuming. Existing methods either rely on complete 3D surface reconstruction, which comes along with high equipment and computation costs, or make use of acceleration data, which can only provide preliminary and rough condition surveys. In this paper we present a method for automated pothole detection in asphalt pavement images. In the proposed method an image is first segmented into defect and non-defect regions using histogram shape-based thresholding. Based on the geometric properties of a defect region the potential pothole shape is approximated utilizing morphological thinning and elliptic regression. Subsequently, the texture inside a potential defect shape is extracted and compared with the texture of the surrounding non-defect pavement in order to determine if the region of interest represents an actual pothole. This methodology has been implemented in a MATLAB prototype, trained and tested on 120 pavement images. The results show that this method can detect potholes in asphalt pavement images with reasonable accuracy.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Most of the manual labor needed to create the geometric building information model (BIM) of an existing facility is spent converting raw point cloud data (PCD) to a BIM description. Automating this process would drastically reduce the modeling cost. Surface extraction from PCD is a fundamental step in this process. Compact modeling of redundant points in PCD as a set of planes leads to smaller file size and fast interactive visualization on cheap hardware. Traditional approaches for smooth surface reconstruction do not explicitly model the sparse scene structure or significantly exploit the redundancy. This paper proposes a method based on sparsity-inducing optimization to address the planar surface extraction problem. Through sparse optimization, points in PCD are segmented according to their embedded linear subspaces. Within each segmented part, plane models can be estimated. Experimental results on a typical noisy PCD demonstrate the effectiveness of the algorithm.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

State-of-the-art speech recognisers are usually based on hidden Markov models (HMMs). They model a hidden symbol sequence with a Markov process, with the observations independent given that sequence. These assumptions yield efficient algorithms, but limit the power of the model. An alternative model that allows a wide range of features, including word- and phone-level features, is a log-linear model. To handle, for example, word-level variable-length features, the original feature vectors must be segmented into words. Thus, decoding must find the optimal combination of segmentation of the utterance into words and word sequence. Features must therefore be extracted for each possible segment of audio. For many types of features, this becomes slow. In this paper, long-span features are derived from the likelihoods of word HMMs. Derivatives of the log-likelihoods, which break the Markov assumption, are appended. Previously, decoding with this model took cubic time in the length of the sequence, and longer for higher-order derivatives. This paper shows how to decode in quadratic time. © 2013 IEEE.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

We investigate performance bounds for feedback control of distributed plants where the controller can be centralized (i.e. it has access to measurements from the whole plant), but sensors only measure differences between neighboring subsystem outputs. Such "distributed sensing" can be a technological necessity in applications where system size exceeds accuracy requirements by many orders of magnitude. We formulate how distributed sensing generally limits feedback performance robust to measurement noise and to model uncertainty, without assuming any controller restrictions (among others, no "distributed control" restriction). A major practical consequence is the necessity to cut down integral action on some modes. We particularize the results to spatially invariant systems and finally illustrate implications of our developments for stabilizing the segmented primary mirror of the European Extremely Large Telescope. © 2013 Elsevier Ltd. All rights reserved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Compliant elements in the leg musculoskeletal system appear to be important not only for running but also for walking in human locomotion as shown in the energetics and kinematics studies of spring-mass model. While the spring-mass model assumes a whole leg as a linear spring, it is still not clear how the compliant elements of muscle-tendon systems behave in a human-like segmented leg structure. This study presents a minimalistic model of compliant leg structure that exploits dynamics of biarticular tension springs. In the proposed bipedal model, each leg consists of three leg segments with passive knee and ankle joints that are constrained by four linear tension springs. We found that biarticular arrangements of the springs that correspond to rectus femoris, biceps femoris and gastrocnemius in human legs provide self-stabilizing characteristics for both walking and running gaits. Through the experiments in simulation and a real-world robotic platform, we show how behavioral characteristics of the proposed model agree with basic patterns of human locomotion including joint kinematics and ground reaction force, which could not be explained in the previous models.