7 resultados para S-matrix method
em Cambridge University Engineering Department Publications Database
Resumo:
Sequential Monte Carlo (SMC) methods are popular computational tools for Bayesian inference in non-linear non-Gaussian state-space models. For this class of models, we propose SMC algorithms to compute the score vector and observed information matrix recursively in time. We propose two different SMC implementations, one with computational complexity $\mathcal{O}(N)$ and the other with complexity $\mathcal{O}(N^{2})$ where $N$ is the number of importance sampling draws. Although cheaper, the performance of the $\mathcal{O}(N)$ method degrades quickly in time as it inherently relies on the SMC approximation of a sequence of probability distributions whose dimension is increasing linearly with time. In particular, even under strong \textit{mixing} assumptions, the variance of the estimates computed with the $\mathcal{O}(N)$ method increases at least quadratically in time. The $\mathcal{O}(N^{2})$ is a non-standard SMC implementation that does not suffer from this rapid degrade. We then show how both methods can be used to perform batch and recursive parameter estimation.
Resumo:
Background: There is an increasing recognition that modelling and simulation can assist in the process of designing health care policies, strategies and operations. However, the current use is limited and answers to questions such as what methods to use and when remain somewhat underdeveloped. Aim. The aim of this study is to provide a mechanism for decision makers in health services planning and management to compare a broad range of modelling and simulation methods so that they can better select and use them or better commission relevant modelling and simulation work. Methods. This paper proposes a modelling and simulation method comparison and selection tool developed from a comprehensive literature review, the research team's extensive expertise and inputs from potential users. Twenty-eight different methods were identified, characterised by their relevance to different application areas, project life cycle stages, types of output and levels of insight, and four input resources required (time, money, knowledge and data). Results: The characterisation is presented in matrix forms to allow quick comparison and selection. This paper also highlights significant knowledge gaps in the existing literature when assessing the applicability of particular approaches to health services management, where modelling and simulation skills are scarce let alone money and time. Conclusions: A modelling and simulation method comparison and selection tool is developed to assist with the selection of methods appropriate to supporting specific decision making processes. In particular it addresses the issue of which method is most appropriate to which specific health services management problem, what the user might expect to be obtained from the method, and what is required to use the method. In summary, we believe the tool adds value to the scarce existing literature on methods comparison and selection. © 2011 Jun et al.
Resumo:
Estimating the fundamental matrix (F), to determine the epipolar geometry between a pair of images or video frames, is a basic step for a wide variety of vision-based functions used in construction operations, such as camera-pair calibration, automatic progress monitoring, and 3D reconstruction. Currently, robust methods (e.g., SIFT + normalized eight-point algorithm + RANSAC) are widely used in the construction community for this purpose. Although they can provide acceptable accuracy, the significant amount of required computational time impedes their adoption in real-time applications, especially video data analysis with many frames per second. Aiming to overcome this limitation, this paper presents and evaluates the accuracy of a solution to find F by combining the use of two speedy and consistent methods: SURF for the selection of a robust set of point correspondences and the normalized eight-point algorithm. This solution is tested extensively on construction site image pairs including changes in viewpoint, scale, illumination, rotation, and moving objects. The results demonstrate that this method can be used for real-time applications (5 image pairs per second with the resolution of 640 × 480) involving scenes of the built environment.
Resumo:
In this paper we formulate the nonnegative matrix factorisation (NMF) problem as a maximum likelihood estimation problem for hidden Markov models and propose online expectation-maximisation (EM) algorithms to estimate the NMF and the other unknown static parameters. We also propose a sequential Monte Carlo approximation of our online EM algorithm. We show the performance of the proposed method with two numerical examples. © 2012 IFAC.
Resumo:
In this paper we develop a new approach to sparse principal component analysis (sparse PCA). We propose two single-unit and two block optimization formulations of the sparse PCA problem, aimed at extracting a single sparse dominant principal component of a data matrix, or more components at once, respectively. While the initial formulations involve nonconvex functions, and are therefore computationally intractable, we rewrite them into the form of an optimization program involving maximization of a convex function on a compact set. The dimension of the search space is decreased enormously if the data matrix has many more columns (variables) than rows. We then propose and analyze a simple gradient method suited for the task. It appears that our algorithm has best convergence properties in the case when either the objective function or the feasible set are strongly convex, which is the case with our single-unit formulations and can be enforced in the block case. Finally, we demonstrate numerically on a set of random and gene expression test problems that our approach outperforms existing algorithms both in quality of the obtained solution and in computational speed. © 2010 Michel Journée, Yurii Nesterov, Peter Richtárik and Rodolphe Sepulchre.