6 resultados para Rural areas

em Cambridge University Engineering Department Publications Database


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Low-carbon off-grid electrification for rural areas is becoming increasingly popular in the United Kingdom. However, many developing countries have been electrifying their rural areas in this way for decades. Case study fieldwork in Nepal and findings from United Kingdom based research will be used to examine how developed nations can learn from the experience of developing countries with regard to the institutional environment and delivery approach adopted in renewable energy off-grid rural electrification. A clearer institutional framework and more direct external assistance during project development are advised. External coordinators should also engage the community in a mobilization process a priori to help alleviate internal conflicts of interest that could later impede a project. © 2011 Elsevier Ltd.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Low-carbon off-grid electrification for rural areas is becoming increasingly popular in developed nations such as the United Kingdom. However, many developing countries have been electrifying their rural areas in this way for decades. Case study fieldwork in Nepal and findings from UK-based research will be used to examine how developed nations can learn from the experience of developing countries with regards the institutional environment and delivery approach adopted in renewable energy off-grid rural electrification. A clearer institutional framework and more direct external assistance during project development are advised. External coordinators should also engage the community in a mobilization process a priori to help alleviate internal conflicts of interest that could later impede a project. ©2010 IEEE.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

It is generally recognized that BIPV (building integrated photovoltaics) has the potential to become a major source of renewable energy in the urban environment. The actual output of a PV module in the field is a function of orientation, total irradiance, spectral irradiance, wind speed, air temperature, soiling and various system-related losses. In urban areas, the attenuation of solar radiation due to air pollution is obvious, and the solar spectral content subsequently changes. The urban air temperature is higher than that in the surrounding countryside, and the wind speed in urban areas is usually less than that in rural areas. Three different models of PV power are used to investigate the effect of urban climate on PV performance. The results show that the dimming of solar radiation in the urban environment is the main reason for the decrease of PV module output using the climatic data of urban and rural sites in Mexico City for year 2003. The urban PV conversion efficiency is higher than that of the rural PV system because the PV module temperature in the urban areas is slightly lower than that in the rural areas in the case. The DC power output of PV seems to be underestimated if the spectral response of PV in the urban environment is not taken into account based on the urban hourly meteorological data of Sao Paulo for year 2004. © 2006 Elsevier Ltd. All rights reserved.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Pico-PV is an excellent technology for bringing electric light to rural areas in the developing world and replacing kerosene lanterns and candles. However, as pico-PV is a comparatively new technology, relatively little is known about appropriate methods for sustainable product development and deployment. For this reason current dissemination methods are often ineffective and unsustainable. This research aims to help project developers deploy pico-PV technologies successfully and in a sustainable manner. To achieve this, a conceptual framework of key sustainability criteria along the value chain was developed and tested. The analysis revealed that the most important criteria for the sustainable deployment of pico-PV systems are: (a) easy and safe operation of the product; (b) that a system for product return is established; (c) the retailer understands the target market and (d) the end-user is aware of the product's existence and its benefits. This research reveals that criteria (b) and (c) are of greatest concern. In light of these findings, the authors propose to focus on the following five factors; namely: (a) raising awareness for certification and creating market reassurance; (b) introducing support mechanisms to facilitate local repair; (c) using existing supply channels and establishing in-country (dis)assembly; (d) introducing financial support mechanisms at product supply stages and; (e) undertaking marketing campaigns. © 2013 Elsevier Ltd. All rights reserved.