23 resultados para Running Kinematics

em Cambridge University Engineering Department Publications Database


Relevância:

30.00% 30.00%

Publicador:

Resumo:

Compliant elements in the leg musculoskeletal system appear to be important not only for running but also for walking in human locomotion as shown in the energetics and kinematics studies of spring-mass model. While the spring-mass model assumes a whole leg as a linear spring, it is still not clear how the compliant elements of muscle-tendon systems behave in a human-like segmented leg structure. This study presents a minimalistic model of compliant leg structure that exploits dynamics of biarticular tension springs. In the proposed bipedal model, each leg consists of three leg segments with passive knee and ankle joints that are constrained by four linear tension springs. We found that biarticular arrangements of the springs that correspond to rectus femoris, biceps femoris and gastrocnemius in human legs provide self-stabilizing characteristics for both walking and running gaits. Through the experiments in simulation and a real-world robotic platform, we show how behavioral characteristics of the proposed model agree with basic patterns of human locomotion including joint kinematics and ground reaction force, which could not be explained in the previous models.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Passive dynamics plays an important role in legged locomotion of the biological systems. The use of passive dynamics provides a number of advantages in legged locomotion such as energy efficiency, self-stabilization against disturbances, and generating gait patterns and behavioral diversity. Inspired from the theoretical and experimental studies in biomechanics, this paper presents a novel bipedal locomotion model for walking and running behavior which uses compliant legs. This model consists of three-segment legs, two servomotors, and four passive joints that are constrained by eight tension springs. The self-organization of two gait patterns (walking and running) is demonstrated in simulation and in a real-world robot. The analysis of joint kinematics and ground reaction force explains how a minimalistic control architecture can exploit the particular leg design for generating different gait patterns. Moreover, it is shown how the proposed model can be extended for controlling locomotion velocity and gait patterns with the simplest control architecture. © 2007 IEEE.