39 resultados para Rotors -- Balancing

em Cambridge University Engineering Department Publications Database


Relevância:

20.00% 20.00%

Publicador:

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Spatial light modulators based around liquid crystal on silicon have found use in a variety of telecommunications applications, including the optimization of multimode fibers, free-space communications, and wavelength selective switching. Ferroelectric liquid crystals are attractive in these areas due to their fast switching times and high phase stability, but the necessity for the liquid crystal to spend equal time in each of its two possible states is an issue of practical concern. Using the highly parallel nature of a graphics processing unit architecture, it is possible to calculate DC balancing schemes of exceptional quality and stability.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Discusses a study conducted to determine the best development path for large wind turbine rotor design. Shape and number of blades, degrees of freedom allowed, and control strategy are considered. Manufacture and costs are also discussed. Two-bladed, stall-regulated, teetered rotors are more cost effective than three-bladed rotors. Single-bladed rotors can be even more cost-effective. No new manufacturing techniques are required. The most cost-effective rotor includes a hub constructed in wood/composite materials, bonded to the blades. There is strong incentive for the blade manufacturer to supply the complete rotor. (from author's abstract)

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Generally, adjustment of gravity equilibrator to a new payload requires energy, e.g. to increase the pre-load of the balancing spring. A novel way of energy-free adjustment of gravity equilibrators is possible by introducing the concept of a storage spring. The storage spring supplies or stores the energy necessary to adjust the balancer spring of the gravity equilibrator. In essence the storage spring mechanism maintains a constant potential energy within the spring mechanism; energy is exchanged between the storage and balancer spring when needed. Various conceptual designs using both zero-free-length springs and regular extension springs are proposed. Two models were manufactured demonstrating the practical embodiments and functionality.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The brushless doubly fed machine (BDFM) is a robust alternative to the doubly fed induction generator (DFIG) which is widely used in wind turbines but suffers from failures associated with its brushes and sliprings. The rotor plays an important part in a BDFM, coupling the two stator fields. To date, the nested loop has been almost exclusively used in modern BDFMs, but this approach is not ideally suited to large machines in which a form wound rotor is likely to be preferable from a manufacturing point of view. This paper gives a comparative study of two rotor windings. The performance of the rotors has been predicted from theory for a frame size 160 BDFM. Actual rotors have been built, using identical rotor laminations, and tested, giving results which accord well with predictions. The results give insight into the design issues of rotors both from electrical and manufacturing viewpoints. ©2010 IEEE.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The Brushless Double-Fed Machine (BDFM) is a type of variable speed generator or drive. Using theoretical analysis of simple BDFM rotors this paper establishes trends in how rotor structures determine the rotor's equivalent circuit resistance, leakage inductance and turns ratio. The variation in measured parameters of five prototype rotors is then analysed in light of the trends found. Both the theory and experimental results suggest a significant performance advantage in using cage+loops type rotors as opposed to the simple nested loop type more usually employed.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The use of boundary-layer-ingesting, embedded propulsion systems can result in inlet flow distortions where the interaction of the boundary layer vorticity and the inlet lip causes horseshoe vortex formation and the ingestion of streamwise vortices into the inlet. A previously-developed body-force-based fan modeling approach was used to assess the change in fan rotor shock noise generation and propagation in a boundary-layer-ingesting, serpentine inlet. This approach is employed here in a parametric study to assess the effects of inlet geometry parameters (offset-to-diameter ratio and downstream-to-upstream area ratio) on flow distortion and rotor shock noise. Mechanisms related to the vortical inlet structures were found to govern changes in the rotor shock noise generation and propagation. The vortex whose circulation is in the opposite direction to the fan rotation (counter-swirling vortex) increases incidence angles on the fan blades near the tip, enhancing noise generation. The vortex with circulation in the direction of fan rotation (co-swirling vortex) creates a region of subsonic relative flow near the blade tip radius which decreases the sound power propagated to the far-field. The parametric study revealed that the overall sound power level at the fan leading edge is set by the ingested streamwise circulation, and that for inlet designs in which the streamwise vortices are displaced away from the duct wall, the sound power at the upstream inlet plane increased by as much as 9 dB. By comparing the far-field noise results obtained to those for a conventional inlet, it is deduced that the changes in rotor shock noise are predominantly due to the ingestion of streamwise vorticity.