15 resultados para Robust methods

em Cambridge University Engineering Department Publications Database


Relevância:

60.00% 60.00%

Publicador:

Resumo:

Estimating the fundamental matrix (F), to determine the epipolar geometry between a pair of images or video frames, is a basic step for a wide variety of vision-based functions used in construction operations, such as camera-pair calibration, automatic progress monitoring, and 3D reconstruction. Currently, robust methods (e.g., SIFT + normalized eight-point algorithm + RANSAC) are widely used in the construction community for this purpose. Although they can provide acceptable accuracy, the significant amount of required computational time impedes their adoption in real-time applications, especially video data analysis with many frames per second. Aiming to overcome this limitation, this paper presents and evaluates the accuracy of a solution to find F by combining the use of two speedy and consistent methods: SURF for the selection of a robust set of point correspondences and the normalized eight-point algorithm. This solution is tested extensively on construction site image pairs including changes in viewpoint, scale, illumination, rotation, and moving objects. The results demonstrate that this method can be used for real-time applications (5 image pairs per second with the resolution of 640 × 480) involving scenes of the built environment.

Relevância:

40.00% 40.00%

Publicador:

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In this communication, we describe a new method which has enabled the first patterning of human neurons (derived from the human teratocarcinoma cell line (hNT)) on parylene-C/silicon dioxide substrates. We reveal the details of the nanofabrication processes, cell differentiation and culturing protocols necessary to successfully pattern hNT neurons which are each key aspects of this new method. The benefits in patterning human neurons on silicon chip using an accessible cell line and robust patterning technology are of widespread value. Thus, using a combined technology such as this will facilitate the detailed study of the pathological human brain at both the single cell and network level. © 2010 Elsevier B.V.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Statistical model-based methods are presented for the reconstruction of autocorrelated signals in impulsive plus continuous noise environments. Signals are modelled as autoregressive and noise sources as discrete and continuous mixtures of Gaussians, allowing for robustness in highly impulsive and non-Gaussian environments. Markov Chain Monte Carlo methods are used for reconstruction of the corrupted waveforms within a Bayesian probabilistic framework and results are presented for contaminated voice and audio signals.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In this paper methods are developed for enhancement and analysis of autoregressive moving average (ARMA) signals observed in additive noise which can be represented as mixtures of heavy-tailed non-Gaussian sources and a Gaussian background component. Such models find application in systems such as atmospheric communications channels or early sound recordings which are prone to intermittent impulse noise. Markov Chain Monte Carlo (MCMC) simulation techniques are applied to the joint problem of signal extraction, model parameter estimation and detection of impulses within a fully Bayesian framework. The algorithms require only simple linear iterations for all of the unknowns, including the MA parameters, which is in contrast with existing MCMC methods for analysis of noise-free ARMA models. The methods are illustrated using synthetic data and noise-degraded sound recordings.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Understanding the regulatory mechanisms that are responsible for an organism's response to environmental change is an important issue in molecular biology. A first and important step towards this goal is to detect genes whose expression levels are affected by altered external conditions. A range of methods to test for differential gene expression, both in static as well as in time-course experiments, have been proposed. While these tests answer the question whether a gene is differentially expressed, they do not explicitly address the question when a gene is differentially expressed, although this information may provide insights into the course and causal structure of regulatory programs. In this article, we propose a two-sample test for identifying intervals of differential gene expression in microarray time series. Our approach is based on Gaussian process regression, can deal with arbitrary numbers of replicates, and is robust with respect to outliers. We apply our algorithm to study the response of Arabidopsis thaliana genes to an infection by a fungal pathogen using a microarray time series dataset covering 30,336 gene probes at 24 observed time points. In classification experiments, our test compares favorably with existing methods and provides additional insights into time-dependent differential expression.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Model compensation methods for noise-robust speech recognition have shown good performance. Predictive linear transformations can approximate these methods to balance computational complexity and compensation accuracy. This paper examines both of these approaches from a variational perspective. Using a matched-pair approximation at the component level yields a number of standard forms of model compensation and predictive linear transformations. However, a tighter bound can be obtained by using variational approximations at the state level. Both model-based and predictive linear transform schemes can be implemented in this framework. Preliminary results show that the tighter bound obtained from the state-level variational approach can yield improved performance over standard schemes. © 2011 IEEE.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We present a matching framework to find robust correspondences between image features by considering the spatial information between them. To achieve this, we define spatial constraints on the relative orientation and change in scale between pairs of features. A pairwise similarity score, which measures the similarity of features based on these spatial constraints, is considered. The pairwise similarity scores for all pairs of candidate correspondences are then accumulated in a 2-D similarity space. Robust correspondences can be found by searching for clusters in the similarity space, since actual correspondences are expected to form clusters that satisfy similar spatial constraints in this space. As it is difficult to achieve reliable and consistent estimates of scale and orientation, an additional contribution is that these parameters do not need to be determined at the interest point detection stage, which differs from conventional methods. Polar matching of dual-tree complex wavelet transform features is used, since it fits naturally into the framework with the defined spatial constraints. Our tests show that the proposed framework is capable of producing robust correspondences with higher correspondence ratios and reasonable computational efficiency, compared to other well-known algorithms. © 1992-2012 IEEE.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Building on recent developments in mixed methods, we discuss the methodological implications of critical realism and explore how these can guide dynamic mixed-methods research design in information systems. Specifically, we examine the core ontological assumptions of CR in order to gain some perspective on key epistemological issues such as causation and validity, and illustrate how these shape our logic of inference in the research process through what is known as retroduction. We demonstrate the value of a CR-led mixed-methods research approach by drawing on a study that examines the impact of ICT adoption in the financial services sector. In doing so, we provide insight into the interplay between qualitative and quantitative methods and the particular value of applying mixed methods guided by CR methodological principles. Our positioning of demi-regularities within the process of retroduction contributes a distinctive development in this regard. We argue that such a research design enables us to better address issues of validity and the development of more robust meta-inferences.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

DNA microarrays provide a huge amount of data and require therefore dimensionality reduction methods to extract meaningful biological information. Independent Component Analysis (ICA) was proposed by several authors as an interesting means. Unfortunately, experimental data are usually of poor quality- because of noise, outliers and lack of samples. Robustness to these hurdles will thus be a key feature for an ICA algorithm. This paper identifies a robust contrast function and proposes a new ICA algorithm. © 2007 IEEE.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Mathematical theorems in control theory are only of interest in so far as their assumptions relate to practical situations. The space of systems with transfer functions in ℋ∞, for example, has many advantages mathematically, but includes large classes of non-physical systems, and one must be careful in drawing inferences from results in that setting. Similarly, the graph topology has long been known to be the weakest, or coarsest, topology in which (1) feedback stability is a robust property (i.e. preserved in small neighbourhoods) and (2) the map from open-to-closed-loop transfer functions is continuous. However, it is not known whether continuity is a necessary part of this statement, or only required for the existing proofs. It is entirely possible that the answer depends on the underlying classes of systems used. The class of systems we concern ourselves with here is the set of systems that can be approximated, in the graph topology, by real rational transfer function matrices. That is, lumped parameter models, or those distributed systems for which it makes sense to use finite element methods. This is precisely the set of systems that have continuous frequency responses in the extended complex plane. For this class, we show that there is indeed a weaker topology; in which feedback stability is robust but for which the maps from open-to-closed-loop transfer functions are not necessarily continuous. © 2013 Copyright Taylor and Francis Group, LLC.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Current methods for formation of detected chess-board vertices into a grid structure tend to be weak in situations with a warped grid, and false and missing vertex-features. In this paper we present a highly robust, yet efficient, scheme suitable for inference of regular 2D square mesh structure from vertices recorded both during projection of a chess-board pattern onto 3D objects, and in the more simple case of camera calibration. Examples of the method's performance in a lung function measuring application, observing chess-boards projected on to patients' chests, are given. The method presented is resilient to significant surface deformation, and tolerates inexact vertex-feature detection. This robustness results from the scheme's novel exploitation of feature orientation information. © 2013 IEEE.