13 resultados para Robust experimental design
em Cambridge University Engineering Department Publications Database
Resumo:
Surface roughness noise is a potentially important contributor to airframe noise. In this paper, noise assessment due to surface roughness is performed for a conceptual Silent Aircraft design SAX-40 by means of a prediction model developed in previous theoretical work and validated experimentally. Estimates of three idealized test cases show that surface roughness could produce a significant noise level above that due to the trailing edge at high frequencies. Roughness height and roughness density are the two most significant parameters influencing surface roughness noise, with roughness height having the dominant effect. The ratio of roughness height to boundary-layer thickness is the relevant non-dimensional parameter and this decreases in the streamwise direction. The candidate surface roughness is selected for SAX-40 to meet an aggressive noise target and keep surface roughness noise at a negligible level. Copyright © 2008 by Yu Liu and Ann P. Dowling.
Resumo:
In order to disign an airfoil of which maximum lift coefficient (CL max) is not sensitive to location of forced top boundary layer transition. Taking maximizing mean value of CL max and minimizing standard deviation as biobjective, leading edge radius, manximum thickness and its location, maximum camber and its location as deterministic design variables, location of forced top boundary layer transition as stochastic variable, XFOIL as deterministic CFD solver, non-intrusive polynomial chaos as substitute of Monte Carlo method, we completed a robust airfoil design problem. Results demonstrate performance of initial airfoil is enhanced through reducing standard deviation of CL max. Besides, we also know maximum thickness has the most dominating effect on mean value of CL max, location of maximum thickness has the most dominating effect on standard deviation of CL max, maximum camber has a little effect on both mean value and standard deviation, and maximum camber is the only element of which increase can lead increase of mean value and standard deviation at the same time. Copyright © 2009 by the American Institute of Aeronautics and Astronautics, Inc.
Resumo:
This paper develops a modelling technique for equipment load panels which directly produces (adequate) models of the underlying dynamics on which to base robust controller design/evaluations. This technique is based on the use of the Lagrange's equations of motion and the resulting models are verified against those produced by a finite Element Method Model.