8 resultados para Robots na educação
em Cambridge University Engineering Department Publications Database
Resumo:
The interplay between robotics and neuromechanics facilitates discoveries in both fields: nature provides roboticists with design ideas, while robotics research elucidates critical features that confer performance advantages to biological systems. Here, we explore a system particularly well suited to exploit the synergies between biology and robotics: high-speed antenna-based wall following of the American cockroach (Periplaneta americana). Our approach integrates mathematical and hardware modeling with behavioral and neurophysiological experiments. Specifically, we corroborate a prediction from a previously reported wall-following template - the simplest model that captures a behavior - that a cockroach antenna-based controller requires the rate of approach to a wall in addition to distance, e.g., in the form of a proportional-derivative (PD) controller. Neurophysiological experiments reveal that important features of the wall-following controller emerge at the earliest stages of sensory processing, namely in the antennal nerve. Furthermore, we embed the template in a robotic platform outfitted with a bio-inspired antenna. Using this system, we successfully test specific PD gains (up to a scale) fitted to the cockroach behavioral data in a "real-world" setting, lending further credence to the surprisingly simple notion that a cockroach might implement a PD controller for wall following. Finally, we embed the template in a simulated lateral-leg-spring (LLS) model using the center of pressure as the control input. Importantly, the same PD gains fitted to cockroach behavior also stabilize wall following for the LLS model. © 2008 IEEE.
Resumo:
Modular self-reconfigurable robots have previously demonstrated that automatic control of their own body shapes enriches their behavioural functions. However, having predefined rigid modules technically limits real-world systems from being hyper-redundant and compliant. Encouraged by recent progress using elastically deformable material for robots, we propose the concept of soft self-reconfigurable robots which may become hyper-flexible during interaction with the environment. As the first attempt towards this goal, the paper proposes a novel approach using viscoelastic material Hot-Melt Adhesives (HMAs): for physical connection and disconnection control between bodies that are not necessarily predefined rigid modules. We present a model that characterizes the temperature dependency of the strength of HMA bonds, which is then validated and used in a feedback controller for automatic connection and disconnection. Using a minimalistic robot platform that is equipped with two devices handling HMAs, the performance of this method is evaluated in a pick-and-place experiment with aluminium and wooden parts. © 2012 IEEE.
Resumo:
It is still not known how the 'rudimentary' movements of fetuses and infants are transformed into the coordinated, flexible and adaptive movements of adults. In addressing this important issue, we consider a behavior that has been perennially viewed as a functionless by-product of a dreaming brain: the jerky limb movements called myoclonic twitches. Recent work has identified the neural mechanisms that produce twitching as well as those that convey sensory feedback from twitching limbs to the spinal cord and brain. In turn, these mechanistic insights have helped inspire new ideas about the functional roles that twitching might play in the self-organization of spinal and supraspinal sensorimotor circuits. Striking support for these ideas is coming from the field of developmental robotics: when twitches are mimicked in robot models of the musculoskeletal system, the basic neural circuitry undergoes self-organization. Mutually inspired biological and synthetic approaches promise not only to produce better robots, but also to solve fundamental problems concerning the developmental origins of sensorimotor maps in the spinal cord and brain.
Resumo:
This article discusses the issues of adaptive autonomous navigation as a challenge of artificial intelligence. We argue that, in order to enhance the dexterity and adaptivity in robot navigation, we need to take into account the decentralized mechanisms which exploit physical system-environment interactions. In this paper, by introducing a few underactuated locomotion systems, we explain (1) how mechanical body structures are related to motor control in locomotion behavior, (2) how a simple computational control process can generate complex locomotion behavior, and (3) how a motor control architecture can exploit the body dynamics through a learning process. Based on the case studies, we discuss the challenges and perspectives toward a new framework of adaptive robot control. © Springer-Verlag Berlin Heidelberg 2007.