144 resultados para Ritualized Fan Behavior

em Cambridge University Engineering Department Publications Database


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Au nanoparticles stabilized by poly(methyl methacrylate) (PMMA) were used as a catalyst to grow vertically aligned ZnO nanowires (NWs). The density of ZnO NWs with very uniform diameter was controlled by changing the concentration of Au-PMMA nanoparticles (NPs). The density was in direct proportion to the concentration of Au-PMMA NPs. Furthermore, the growth process of ZnO NWs using Au-PMMA NPs was systematically investigated through comparison with that using Au thin film as a catalyst. Au-PMMA NPs induced polyhedral-shaped bases of ZnO NWs separated from each other, while Au thin film formed a continuous network of bases of ZnO NWs. This approach provides a facile and cost-effective catalyst density control method, allowing us to grow high-quality vertically aligned ZnO NWs suitable for many viable applications.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Variable selection for regression is a classical statistical problem, motivated by concerns that too large a number of covariates may bring about overfitting and unnecessarily high measurement costs. Novel difficulties arise in streaming contexts, where the correlation structure of the process may be drifting, in which case it must be constantly tracked so that selections may be revised accordingly. A particularly interesting phenomenon is that non-selected covariates become missing variables, inducing bias on subsequent decisions. This raises an intricate exploration-exploitation tradeoff, whose dependence on the covariance tracking algorithm and the choice of variable selection scheme is too complex to be dealt with analytically. We hence capitalise on the strength of simulations to explore this problem, taking the opportunity to tackle the difficult task of simulating dynamic correlation structures. © 2008 IEEE.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this paper, we demonstrate strong flexoelectric coupling in bimesogenic liquid crystals. This strong coupling is determined via the flexoelectro-optic effect in chiral nematic liquid crystals based on bimesogenic mixtures that are doped with low concentrations of high twisting power chiral additive. Two mixtures were examined: one had a pitch length of p∼300nm, the other had a pitch length of p∼600nm. These mixtures exhibit enantiotropic chiral nematic phases close to room temperature. We found that full-intensity modulation, that is, a rotation of the optic axis of 45° between crossed polarizers, could be achieved at significantly lower applied electric fields (E<5Vμm -1) than previously reported. In fact, for the condition of full-intensity modulation, the lowest electric-field strength recorded was E=2Vμm-1. As a result of a combination of the strong flexoelectric coupling and a divergence in the pitch, tilt angles of the optic axis up to 87°, i.e., a rotation of the optic axis through 174°, were observed. Furthermore, the flexoelastic ratios, which may be considered as a figure-of-merit parameter, were calculated from the results and found to be large, ranging from 1.3to2C/Nm for a temperature range of up to 40°C. © 2006 American Institute of Physics.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The work in this paper forms part of a project on the use of large eddy simulation (LES) for broadband rotor-stator interaction noise prediction. Here we focus on LES of the flow field near a fan blade trailing edge. The first part of the paper aims to evaluate LES suitability for predicting the near-field velocity field for a blunt NACA-0012 airfoil at moderate Reynolds numbers (2× 10 5 and 4× 10 5). Preliminary computations of turbulent mean and root-mean-square velocities, as well as energy spectra at the trailing edge, are compared with those from a recent experiment.1 The second part of the paper describes preliminary progress on an LES calculation of the fan wakes on a fan rig. 2 The CFD code uses a mixed element unstructured mesh with a median dual control volume. A wall-adapting local eddy-viscosity sub-grid scale model is employed. A very small amount of numerical dissipation is added in the numerical scheme to keep the compressible solver stable. Further results for the fan turbulentmean and RMS velocity, and especially the aeroacoustics field will be presented at a later stage. Copyright © 2008 by Qinling LI, Nigel Peake & Mark Savill.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This work forms part of a project on the use of large eddy simulation (LES) for broadband rotor-stator interaction noise prediction. In this paper, we focus on LES calculations of noise sources on and close to a blade trailing edge. We consider two test cases; one an isolated NACA0012 airfoil in flow, and the other an industry-standard rotating fan. In the first case, turbulent mean and RMS velocities and energy spectra at different locations are compared with those from experiment. 1,2The sound generated by the unsteady pressure fluctuations on the airfoil surface and by the flow turbulence will be predicted using a Ffowcs Williams Hawkings (FW-H) surface. In the second case, unsteady flow and acoustic fields around the blade passage 3 are presented for a refined mesh, and the rotor-stator tonal noise will be predicted by using the rotor-wake mean velocity profile and the methodology described in Lloyd & Peake 4. Copyright © 2009 by Qinling Li, Nigel Peake & Mark Savill.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Electrical bias and light stressing followed by natural recovery of amorphous hafnium-indium-zinc-oxide (HIZO) thin film transistors with a silicon oxide/nitride dielectric stack reveals defect density changes, charge trapping and persistent photoconductivity (PPC). In the absence of light, the polarity of bias stress controls the magnitude and direction of the threshold voltage shift (Δ VT), while under light stress, VT consistently shifts negatively. In all cases, there was no significant change in field-effect mobility. Light stress gives rise to a PPC with wavelength-dependent recovery on time scale of days. We observe that the PPC becomes more pronounced at shorter wavelengths. © 2010 American Institute of Physics.