5 resultados para Risky sexual behaviours
em Cambridge University Engineering Department Publications Database
Resumo:
This article reports a case study application of a systematic approach to modelling complex organisations, centred on simulation modelling (SM). The approach leads to populated instances of complementary model types, in ways that systematically capture, validate and facilitate various uses of organisational understandings, knowledge and data normally distributed amongst multiple knowledge holders. The model-driven approach to decision making enables improved manufacturing responsiveness. Literature on modelling technologies relevant to manufacturing systems organisation design and change is presented, as is literature on production planning and control. This provides a rationale for the development of a new modelling methodology which combines the use of enterprise, causal loop and SM. Subsequently, this article describes how in the case of a specific manufacturing enterprise the combined modelling techniques have informed the choice of alternative production planning and control policies. An example enterprise model of a capacitor manufacturing company is illustrated as derivative causal-loop models that structure and enable the design and use of a general purpose simulation model.
Resumo:
Methane hydrate bearing soil has attracted increasing interest as a potential energy resource where methane gas can be extracted from dissociating hydrate-bearing sediments. Seismic testing techniques have been applied extensively and in various ways, to detect the presence of hydrates, due to the fact that hydrates increase the stiffness of hydrate-bearing sediments. With the recognition of the limitations of laboratory and field tests, wave propagation modelling using Discrete Element Method (DEM) was conducted in this study in order to provide some particle-scale insights on the hydrate-bearing sandy sediment models with pore-filling and cementation hydrate distributions. The relationship between shear wave velocity and hydrate saturation was established by both DEM simulations and analytical solutions. Obvious differences were observed in the dependence of wave velocity on hydrate saturation for these two cases. From the shear wave velocity measurement and particle-scale analysis, it was found that the small-strain mechanical properties of hydrate-bearing sandy sediments are governed by both the hydrate distribution patterns and hydrate saturation. © 2013 AIP Publishing LLC.