20 resultados para Risk based Maintenance

em Cambridge University Engineering Department Publications Database


Relevância:

100.00% 100.00%

Publicador:

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Space heating accounts for a large portion of the world's carbon dioxide emissions. Ground Source Heat Pumps (GSHPs) are a technology which can reduce carbon emissions from heating and cooling. GSHP system performance is however highly sensitive to deviation from design values of the actual annual energy extraction/rejection rates from/to the ground. In order to prevent failure and/or performance deterioration of GSHP systems it is possible to incorporate a safety factor in the design of the GSHP by over-sizing the ground heat exchanger (GHE). A methodology to evaluate the financial risk involved in over-sizing the GHE is proposed is this paper. A probability based approach is used to evaluate the economic feasibility of a hypothetical full-size GSHP system as compared to four alternative Heating Ventilation and Air Conditioning (HVAC) system configurations. The model of the GSHP system is developed in the TRNSYS energy simulation platform and calibrated with data from an actual hybrid GSHP system installed in the Department of Earth Science, University of Oxford, UK. Results of the analysis show that potential savings from a full-size GSHP system largely depend on projected HVAC system efficiencies and gas and electricity prices. Results of the risk analysis also suggest that a full-size GSHP with auxiliary back up is potentially the most economical system configuration. © 2012 Elsevier Ltd.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Infrastructure project sustainability assessment typically entails the use of specialised assessment tools to measure and rate project performance against a set of criteria. This paper looks beyond the prevailing approaches to sustainability assessments and explores sustainability principles in terms of project risks and opportunities. Taking a risk management approach to applying sustainability concepts to projects has the potential to reconceptualise decision structures for sustainability from bespoke assessments to becoming a standard part of the project decisionmaking process. By integrating issues of sustainability into project risk management for project planning, design and construction, sustainability is considered within a more traditional business and engineering language. Currently, there is no widely practised approach for objectively considering the environmental and social context of projects alongside the more traditional project risk assessments of time, cost and quality. A risk-based approach would not solve all the issues associated with existing sustainability assessments but it would place sustainability concerns alongside other key risks and opportunities, integrating sustainability with other project decisions.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Condition-based maintenance is concerned with the collection and interpretation of data to support maintenance decisions. The non-intrusive nature of vibration data enables the monitoring of enclosed systems such as gearboxes. It remains a significant challenge to analyze vibration data that are generated under fluctuating operating conditions. This is especially true for situations where relatively little prior knowledge regarding the specific gearbox is available. It is therefore investigated how an adaptive time series model, which is based on Bayesian model selection, may be used to remove the non-fault related components in the structural response of a gear assembly to obtain a residual signal which is robust to fluctuating operating conditions. A statistical framework is subsequently proposed which may be used to interpret the structure of the residual signal in order to facilitate an intuitive understanding of the condition of the gear system. The proposed methodology is investigated on both simulated and experimental data from a single stage gearbox. © 2011 Elsevier Ltd. All rights reserved.