2 resultados para Ricci, Scipione de, Obispo,
em Cambridge University Engineering Department Publications Database
Resumo:
A case study of the response of two buildings to the construction of a 12 m diameter tunnel excavated by conventional method, in Italy, is studied. The 12 m diameter tunnel was constructed carrying out reinforcement of the tunnel face and around the crown prior to excavation and installation of the temporary sprayed concrete lining and the permanent reinforced concrete lining. Reflective prisms, placed at first floor level around the perimeter of the building facades, allowed building settlements to be measured. Ground settlements between the two buildings were measured using BRE type settlement studs. Extensive protective measures were adopted to maintain stability of the tunnel excavation and to reduce ground movements. The number of horizontal jet grout columns installed into the tunnel face was reduced over the course of the project. Results from CPT tests indicate that the undrained shear strength at the tunnel axis is around 120 kPa. SPT and undrained unconsolidated (UU) triaxial tests indicate lower strengths of around 80 kPa, although this may be due to sample disturbance.
Resumo:
The response of buildings to tunnelling induced ground movements is an area of great importance for many urban tunnelling projects. This paper presents the response of two buildings to the construction of a 12 m diameter sprayed concrete lining (SCL) tunnel with face reinforcement, in Italy. Soil and structure displacements were monitored through extensive instrumentation. The settlement response of the two buildings was found to differ significantly, demonstrating both flexible and rigid response mechanisms. Comparison of the building settlement profiles with greenfield settlements enables the soil structure interaction to be quantified. Encouraging agreement between the modification to the greenfield settlement profile displayed by buildings and estimates made from existing predictive tools is observed. Potential issues for infrastructure connected to buildings, arising from the embedment of rigid buildings into the soil, are also highlighted. © 2012 Taylor & Francis Group.