11 resultados para Ribatejano pig

em Cambridge University Engineering Department Publications Database


Relevância:

20.00% 20.00%

Publicador:

Resumo:

This paper describes a method for monitoring the variation in support condition of pipelines using a vibration technique. The method is useful for detecting poor support of buried pipelines and for detecting spanning and depth of cover in sub-sea lines. Variation in the pipe support condition leads to increased likelihood of pipe damage. Under roadways, poorly supported pipe may be damaged by vehicle loading. At sea, spanned sections of pipe are vulnerable to ocean current loading and also to snagging by stray anchors in shallow waters. A vibrating `pig' has been developed and tested on buried pipelines. Certain features of pipe support, such as voids and hard spots, display characteristic responses to vibration, and these are measured by the vibrating pig. Post-processing of the measured vibration data is used to produce a graphical representation of the pipeline support and certain `feature characteristics' are identified. In field tests on a pipeline with deliberately constructed support faults, features detected by the vibrating pig are in good agreement with the known construction.

Relevância:

20.00% 20.00%

Publicador:

Relevância:

10.00% 10.00%

Publicador:

Resumo:

This paper describes a device which can be used to detect variation in the integrity of the surrounding medium which supports buried gas pipes. The method is also applicable to other kinds of pipe. Variation in pipe support condition leads to increased likelihood of pipe damage under vehicle loading. A vibrating 'pig' has been developed and tested on buried pipelines in Britain and the measured data obtained is compared with theoretical models. Certain features, such as voids, hard spots and joints, display characteristic responses to vibration and a library of such characteristics has been constructed both experimentally and from the theoretical models.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

A biomimetic reactor has been developed to synthesize hydroxyapatite- gelatin (HAP-GEL) nanocomposites that mimic ultra-structures of natural bone. We hypothesize that in the reactor, gelatin concentration controls morphology and packing structures of HAP crystals. To test the hypothesis, three types of mechanical tests were conducted, including nanoindentation, compression, and fracture tests. Nanoindentation tests in conjunction with computer modeling were used to assess effects on gelatin-induced microstructures of HAP. The results showed that increasing gelatin content increased both the plane strain modulus and the fracture toughness. The gelatin appeared to shorten the HAP crystal distance, which consolidated the internal structure of the composite and made the material more rigid. The fracture toughness KIC increased partially due to the effect of fiber bridging between gelatin molecules. The highest fracture toughness (1.12 MPa·1/2) was equivalent to that of pure hydroxyapatite. The compressive strength of the HAP-GEL (107.7±26.8 MPa) was, however, less sensitive to microstructural changes and was within the range of natural cortical bone (human 170 MPa, pig: 100 MPa). The compression strength was dominated by void inclusions while the nanoindentation response reflected ultra-structural arrangement of the crystals. The gelatin concentration is likely to modify crystal arrangement as demonstrated in TEM experiments but not void distribution at macroscopic levels. © 2006 Materials Research Society.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Vibration methods are used to identify faults, such as spanning and loss of cover, in long off-shore pipelines. A pipeline `pig', propelled by fluid flow, generates transverse vibration in the pipeline and the measured vibration amplitude reflects the nature of the support condition. Large quantities of vibration data are collected and analyzed by Fourier and wavelet methods.