9 resultados para Responsivity

em Cambridge University Engineering Department Publications Database


Relevância:

20.00% 20.00%

Publicador:

Resumo:

We experimentally demonstrate an on-chip compact and simple to fabricate silicon Schottky photodetector for telecom wavelengths operating on the basis of internal photoemission process. The device is realized using CMOS compatible approach of local-oxidation of silicon, which enables the realization of the photodetector and low-loss bus photonic waveguide at the same fabrication step. The photodetector demonstrates enhanced internal responsivity of 12.5mA/W for operation wavelength of 1.55µm corresponding to an internal quantum efficiency of 1%, about two orders of magnitude higher than our previously demonstrated results [22]. We attribute this improved detection efficiency to the presence of surface roughness at the boundary between the materials forming the Schottky contact. The combination of enhanced quantum efficiency together with a simple fabrication process provides a promising platform for the realization of all silicon photodetectors and their integration with other nanophotonic and nanoplasmonic structures towards the construction of monolithic silicon opto-electronic circuitry on-chip.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

From the wide spectrum of potential applications of graphene, ranging from transistors and chemical sensors to nanoelectromechanical devices and composites, the field of photonics and optoelectronics is believed to be one of the most promising. Indeed, graphene's suitability for high-speed photodetection was demonstrated in an optical communication link operating at 10 Gbit s(-1). However, the low responsivity of graphene-based photodetectors compared with traditional III-V-based ones is a potential drawback. Here we show that, by combining graphene with plasmonic nanostructures, the efficiency of graphene-based photodetectors can be increased by up to 20 times, because of efficient field concentration in the area of a p-n junction. Additionally, wavelength and polarization selectivity can be achieved by employing nanostructures of different geometries.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

From the wide spectrum of potential applications of graphene, ranging from transistors and chemical sensors to nanoelectromechanical devices and composites, the field of photonics and optoelectronics is believed to be one of the most promising. Indeed, graphene's suitability for high-speed photodetection was demonstrated in an optical communication link operating at 10 Gbit s 1. However, the low responsivity of graphene-based photodetectors compared with traditional III-V-based ones is a potential drawback. Here we show that, by combining graphene with plasmonic nanostructures, the efficiency of graphene-based photodetectors can be increased by up to 20 times, because of efficient field concentration in the area of a p-n junction. Additionally, wavelength and polarization selectivity can be achieved by employing nanostructures of different geometries. © 2011 Macmillan Publishers Limited. All rights reserved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Hybrid nanostructured materials can exhibit different properties than their constituent components, and can enable decoupled engineering of energy conversion and transport functions. Novel means of building hybrid assemblies of crystalline C 60 and carbon nanotubes (CNTs) are presented, wherein aligned CNT films direct the crystallization and orientation of C 60 rods from solution. In these hybrid films, the C 60 rods are oriented parallel to the direction of the CNTs throughout the thickness of the film. High-resolution imaging shows that the crystals incorporate CNTs during growth, yet grazing-incidence X-ray diffraction (GIXD) shows that the crystal structure of the C 60 rods is not perturbed by the CNTs. Growth kinetics of the C 60 rods are enhanced 8-fold on CNTs compared to bare Si, emphasizing the importance of the aligned, porous morphology of the CNT films as well as the selective surface interactions between C 60 and CNTs. Finally, it is shown how hybrid C 60-CNT films can be integrated electrically and employed as UV detectors with a high photoconductive gain and a responsivity of 10 5 A W -1 at low biases (± 0.5 V). The finding that CNTs can induce rapid, directional crystallization of molecules from solution may have broader implications to the science and applications of crystal growth, such as for inorganic nanocrystals, proteins, and synthetic polymers. © 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Film bulk acoustic resonators (FBARs) and solidly mounted resonators (SMRs) have the potential to significantly improve upon the sensitivity and minimum detection limit of traditional gravimetric sensors based on quartz crystal microbalances (QCMs) and surface acoustic wave resonators (SAWs). To date, neither FBAR nor SMR devices have been demonstrated to be superior to the other; hence the choice between them depends primarily on the users' ability to design/fabricate membranes and/or Bragg reflectors. In this work, it is shown that identically designed FBAR and SMR devices resonating at the same frequency exhibit different responsivities to mass loadings, Rm, and that the SMRs are less responsive than the FBARs. For the specific device design and resonant frequency (~2 GHz) of the resonators presented here, the FBARs' mass responsivity is ~20% greater than that of the SMRs', and although this value is not universal for all possible device designs, it clearly shows that FBAR devices should be favoured over SMRs in gravimetric sensing applications where the FBARs' fragility is not an issue. Numerical calculations based on Mason's model offer an insight into the physical mechanisms behind the greater FBARs responsivity, and it was shown that the Bragg reflector has an effect on the acoustic load at one of the facets of the piezoelectric films which is in turn responsible for the SMRs' lower responsivity to mass loadings. © 2013 Elsevier B.V.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

We experimentally demonstrate an on-chip nanoscale silicon surface-plasmon Schottky photodetector based on internal photoemission process and operating at telecom wavelengths. The device is fabricated using a self-aligned approach of local-oxidation of silicon (LOCOS) on silicon on insulator substrate, which provides compatibility with standard complementary metal-oxide semiconductor technology and enables the realization of the photodetector and low-loss bus photonic waveguide at the same fabrication step. Additionally, LOCOS technique allows avoiding lateral misalignment between the silicon surface and the metal layer to form a nanoscale Schottky contact. The fabricated devices showed enhanced detection capability for shorter wavelengths that is attributed to increased probability of the internal photoemission process. We found the responsivity of the nanodetector to be 0.25 and 13.3 mA/W for incident optical wavelengths of 1.55 and 1.31 μm, respectively. The presented device can be integrated with other nanophotonic and nanoplasmonic structures for the realization of monolithic opto-electronic circuitry on-chip.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

We experimentally demonstrate an on-chip nanoscale silicon surface-plasmon Schottky photodetector based on internal photoemission process and operating at telecom wavelengths. The device is fabricated using a self-aligned approach of local-oxidation of silicon (LOCOS) on silicon on insulator substrate, which provides compatibility with standard complementary metal-oxide semiconductor technology and enables the realization of the photodetector and low-loss bus photonic waveguide at the same fabrication step. Additionally, LOCOS technique allows avoiding lateral misalignment between the silicon surface and the metal layer to form a nanoscale Schottky contact. The fabricated devices showed enhanced detection capability for shorter wavelengths that is attributed to increased probability of the internal photoemission process. We found the responsivity of the nanodetector to be 0.25 and 13.3 mA/W for incident optical wavelengths of 1.55 and 1.31 μm, respectively. The presented device can be integrated with other nanophotonic and nanoplasmonic structures for the realization of monolithic opto-electronic circuitry on-chip. © 2011 American Chemical Society.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

© 2014 AIP Publishing LLC. We report bilayer-graphene field effect transistors operating as Terahertz (THz) broadband photodetectors based on plasma-waves excitation. By employing wide-gate geometries or buried gate configurations, we achieve a responsivity ∼1.2 V/W (1.3 mA/W) and a noise equivalent power ∼2 × 10-9 W/√Hz in the 0.29-0.38 THz range, in photovoltage and photocurrent mode. The potential of this technology for scalability to higher frequencies and the development of flexible devices makes our approach competitive for a future generation of THz detection systems.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

This paper demonstrates on chip sub bandgap detection of light at 1550 nm wavelength using the configuration of interleaved PN junctions along a silicon waveguide. The device operates under reverse bias in a nearly fully depleted mode, thus minimizing the free carrier plasma losses and significantly increases the detection volume at the same time. Furthermore, substantial enhancement in responsivity is observed by the transition from reverse bias to avalanche breakdown regime. The observed high responsivity of up to 7.2 mA/W at 3 V is attributed to defect assisted photogeneration, where the defects are related to the surface and the bulk of the waveguide. © 2014 AIP Publishing LLC.