10 resultados para Relaxation time

em Cambridge University Engineering Department Publications Database


Relevância:

70.00% 70.00%

Publicador:

Resumo:

We investigated the dynamics and relaxation of 90° domains in 60-nm-thick lead-zirconium titanate (PbZr0.3 T0.7 O3) films, with enhanced piezoresponse force microscopy. We show that under opposite electric fie ld, ferroelectric domains are reversibly switched while ferroelastic domains reorganize in a nonreversible way. Moreover, we show that the relaxation-time constant of 90° domains is two orders of magnitude shorter than for the previously reported 180° domains relaxation. Furthermore, we demonstrate the influence of geometry and scale on the relaxation process. Finally, we propose a relaxation mechanism for ferroelastic-ferroelectric systems, with implications for devices based on these materials. © 2010 The American Physical Society.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The propagation of ultrashort pulses in a traveling wave semiconductor amplifier is considered. It is demonstrated that the effective polarization relaxation time, which determines the coherence of the interaction of pulses within the medium, strongly depends on its optical gain. As a result, it is shown that at large optical gains the coherence time can exceed the transverse relaxation time T2 by an order of magnitude, this accounting for the strong femtosecond superradiant pulse generation commonly observed in semiconductor laser structures. © 2012 Elsevier B.V. All rights reserved.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

A lattice Boltzmann method is used to model gas-solid reactions where the composition of both the gas and solid phase changes with time, while the boundary between phases remains fixed. The flow of the bulk gas phase is treated using a multiple relaxation time MRT D3Q19 model; the dilute reactant is treated as a passive scalar using a single relaxation time BGK D3Q7 model with distinct inter- and intraparticle diffusivities. A first-order reaction is incorporated by modifying the method of Sullivan et al. [13] to include the conversion of a solid reactant. The detailed computational model is able to capture the multiscale physics encountered in reactor systems. Specifically, the model reproduced steady state analytical solutions for the reaction of a porous catalyst sphere (pore scale) and empirical solutions for mass transfer to the surface of a sphere at Re=10 (particle scale). Excellent quantitative agreement between the model and experiments for the transient reduction of a single, porous sphere of Fe 2O 3 to Fe 3O 4 in CO at 1023K and 10 5Pa is demonstrated. Model solutions for the reduction of a packed bed of Fe 2O 3 (reactor scale) at identical conditions approached those of experiments after 25 s, but required prohibitively long processor times. The presented lattice Boltzmann model resolved successfully mass transport at the pore, particle and reactor scales and highlights the relevance of LB methods for modelling convection, diffusion and reaction physics. © 2012 Elsevier Inc.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Two near-ultraviolet (UV) sensors based on solution-grown zinc oxide (ZnO) nanowires (NWs) which are only sensitive to photo-excitation at or below 400 nm wavelength have been fabricated and characterized. Both devices keep all processing steps, including nanowire growth, under 100 °C for compatibility with a wide variety of substrates. The first device type uses a single optical lithography step process to allow simultaneous in situ horizontal NW growth from solution and creation of symmetric ohmic contacts to the nanowires. The second device type uses a two-mask optical lithography process to create asymmetric ohmic and Schottky contacts. For the symmetric ohmic contacts, at a voltage bias of 1 V across the device, we observed a 29-fold increase in current in comparison to dark current when the NWs were photo-excited by a 400 nm light-emitting diode (LED) at 0.15 mW cm(-2) with a relaxation time constant (τ) ranging from 50 to 555 s. For the asymmetric ohmic and Schottky contacts under 400 nm excitation, τ is measured between 0.5 and 1.4 s over varying time internals, which is ~2 orders of magnitude faster than the devices using symmetric ohmic contacts.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

A theoretical model of superradiant pulse generation in semiconductor laser structures is developed. It is shown that a high optical gain of the medium can overcome phase relaxation and results in a built-up superradiant state (macroscopic dipole) in an assembly of electron - hole pairs on a time scale much longer than the characteristic polarisation relaxation time T2. A criterion of the superradiance generation is the condition acmT2 > 1, where α is the gain coefficient and cm is the speed of light in the medium. The theoretical model describes both qualitatively and quantitatively the author's own experimental results.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

In this work specific film structures of Li-Nb-O/Li/Li-Nb-O are investigated by AC Impedance Spectroscopy measurements at different temperatures. This gives the opportunity to investigate properties of the material itself and, at the same time, to consider the influence of the grain boundaries on the ionic behavior of the polycrystalline Lithium Niobate. On the other hand, LiNbO3/Li/Cu multi-layers are studied as electrolyte/anode bi-layers and potential parts of "Li-free" microbatteries. The Li deficiency in the as deposited Li-Nb-O films is cured by forming a "sandwich" of Li-Nb-O/Li/Li-Nb-O, which after annealing becomes ionic conductor. The electrical behavior of an annealed film depends on two sources. The first is due to properties of the material itself and the second is based on the network of the grain boundaries. The average size of the grains is strongly influenced by the structure of the ohmic-contact/substrate. The electrical behavior of the electrolyte/anode interface of the "Li-free" structure LiNbO3/Li/Cu/Au is very similar to the impedance measurements of the single LiNbO3 single films. The whole multilayer structure, though, presents a third relaxation time which is consistent of a small resistance. This resistance is independent of temperature and it seems that is due to the metallic interface Li/Cu/Au. © 2010 Elsevier B.V. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A two-step viscoelastic spherical indentation method is proposed to compensate for 1) material relaxation and 2) sample thickness. In the first step, the indenter is moved at a constant speed and the reaction force is measured. In the second step, the indenter is held at a constant position and the relaxation response of the material is measured. Then the relaxation response is fit with a multi-exponential function which corresponds to a three-branch general Maxwell model. The relaxation modulus is derived by correcting the finite ramp time introduced in the first step. The proposed model takes into account the sample thickness, which is important for applications in which the sample thickness is less than ten times the indenter radius. The model is validated numerically by finite element simulations. Experiments are carried out on a 10% gelatin phantom and a chicken breast sample with the proposed method. The results for both the gelatin phantom and the chicken breast sample agree with the results obtained from a surface wave method. Both the finite element simulations and experimental results show improved elasticity estimations by incorporating the sample thickness into the model. The measured shear elasticities of the 10% gelatin sample are 6.79 and 6.93 kPa by the proposed finite indentation method at sample thickness of 40 and 20 mm, respectively. The elasticity of the same sample is estimated to be 6.53 kPa by the surface wave method. For the chicken breast sample, the shear elasticity is measured to be 4.51 and 5.17 kPa by the proposed indentation method at sample thickness of 40 and 20 mm, respectively. Its elasticity is measured by the surface wave method to be 4.14 kPa. © 2011 IEEE.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Breather stability and longevity in thermally relaxing nonlinear arrays is investigated under the scrutiny of the analysis and tools employed for time series and state reconstruction of a dynamical system. We briefly review the methods used in the analysis and characterize a breather in terms of the results obtained with such methods. Our present work focuses on spontaneously appearing breathers in thermal Fermi-Pasta-Ulam arrays but we believe that the conclusions are general enough to describe many other related situations; the particular case described in detail is presented as another example of systems where three incommensurable frequencies dominate their chaotic dynamics (reminiscent of the Ruelle-Takens scenario for the appearance of chaotic behavior in nonlinear systems). This characterization may also be of great help for the discovery of breathers in experimental situations where the temporal evolution of a local variable (like the site energy) is the only available/measured data. © 2005 American Institute of Physics.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The fracture and time-dependent properties of cornea are very important for the development of corneal scaffolds and prostheses. However, there has been no systematic study of cornea fracture; time-dependent behavior of cornea has never been investigated in a fracture context. In this work, fracture toughness of cornea was characterized by trouser tear tests, and time-dependent properties of cornea were examined by stress-relaxation and uniaxial tensile tests. Control experiments were performed on a photoelastic rubber sheet. Corneal fracture resistance was found to be strain-rate dependent, with values ranging from 3.39±0.57 to 5.40±0.48kJm(-2) over strain rates from 3 to 300mmmin(-1). Results from stress-relaxation tests confirmed that cornea is a nonlinear viscoelastic material. The cornea behaved closer to a viscous fluid at small strain but became relatively more elastic at larger strain. Although cornea properties are greatly dependent on time, the stress-strain responses of cornea were found to be insensitive to the strain rate when subjected to tensile loading.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Viscoelasticity and poroelasticity commonly coexist as time-dependent behaviors in polymer gels. Engineering applications often require knowledge of both behaviors separated; however, few methods exist to decouple viscoelastic and poroelastic properties of gels. We propose a method capable of separating viscoelasticity and poroelasticity of gels in various mechanical tests. The viscoelastic characteristic time and the poroelastic diffusivity of a gel define an intrinsic material length scale of the gel. The experimental setup gives a sample length scale, over which the solvent migrates in the gel. By setting the sample length to be much larger or smaller than the material length, the viscoelasticity and poroelasticity of the gel will dominate at different time scales in a test. Therefore, the viscoelastic and poroelastic properties of the gel can be probed separately at different time scales of the test. We further validate the method by finite-element models and stress-relaxation experiments. © 2014 The Chinese Society of Theoretical and Applied Mechanics; Institute of Mechanics, Chinese Academy of Sciences and Springer-Verlag Berlin Heidelberg.