6 resultados para Relationship with educational system
em Cambridge University Engineering Department Publications Database
Resumo:
RATIONALE: Impulsivity is a vulnerability marker for drug addiction in which other behavioural traits such as anxiety and novelty seeking ('sensation seeking') are also widely present. However, inter-relationships between impulsivity, novelty seeking and anxiety traits are poorly understood. OBJECTIVE: The objective of this paper was to investigate the contribution of novelty seeking and anxiety traits to the expression of behavioural impulsivity in rats. METHODS: Rats were screened on the five-choice serial reaction time task (5-CSRTT) for spontaneously high impulsivity (SHI) and low impulsivity (SLI) and subsequently tested for novelty reactivity and preference, assessed by open-field locomotor activity (OF), novelty place preference (NPP), and novel object recognition (OR). Anxiety was assessed on the elevated plus maze (EPM) both prior to and following the administration of the anxiolytic drug diazepam, and by blood corticosterone levels following forced novelty exposure. Finally, the effects of diazepam on impulsivity and visual attention were assessed in SHI and SLI rats. RESULTS: SHI rats were significantly faster to enter an open arm on the EPM and exhibited preference for novelty in the OR and NPP tests, unlike SLI rats. However, there was no dimensional relationship between impulsivity and either novelty-seeking behaviour, anxiety levels, OF activity or novelty-induced changes in blood corticosterone levels. By contrast, diazepam (0.3-3 mg/kg), whilst not significantly increasing or decreasing impulsivity in SHI and SLI rats, did reduce the contrast in impulsivity between these two groups of animals. CONCLUSIONS: This investigation indicates that behavioural impulsivity in rats on the 5-CSRTT, which predicts vulnerability for cocaine addiction, is distinct from anxiety, novelty reactivity and novelty-induced stress responses, and thus has relevance for the aetiology of drug addiction.
Resumo:
We consider finite-horizon LQR control with limited controller-system communication. Within a time-horizon T , the controller can only communicate with the system d
Resumo:
The contribution described in this paper is an algorithm for learning nonlinear, reference tracking, control policies given no prior knowledge of the dynamical system and limited interaction with the system through the learning process. Concepts from the field of reinforcement learning, Bayesian statistics and classical control have been brought together in the formulation of this algorithm which can be viewed as a form of indirect self tuning regulator. On the task of reference tracking using a simulated inverted pendulum it was shown to yield generally improved performance on the best controller derived from the standard linear quadratic method using only 30 s of total interaction with the system. Finally, the algorithm was shown to work on the simulated double pendulum proving its ability to solve nontrivial control tasks. © 2011 IEEE.