6 resultados para Regression To The Mean
em Cambridge University Engineering Department Publications Database
Resumo:
Numerous psychophysical studies suggest that the sensorimotor system chooses actions that optimize the average cost associated with a movement. Recently, however, violations of this hypothesis have been reported in line with economic theories of decision-making that not only consider the mean payoff, but are also sensitive to risk, that is the variability of the payoff. Here, we examine the hypothesis that risk-sensitivity in sensorimotor control arises as a mean-variance trade-off in movement costs. We designed a motor task in which participants could choose between a sure motor action that resulted in a fixed amount of effort and a risky motor action that resulted in a variable amount of effort that could be either lower or higher than the fixed effort. By changing the mean effort of the risky action while experimentally fixing its variance, we determined indifference points at which participants chose equiprobably between the sure, fixed amount of effort option and the risky, variable effort option. Depending on whether participants accepted a variable effort with a mean that was higher, lower or equal to the fixed effort, they could be classified as risk-seeking, risk-averse or risk-neutral. Most subjects were risk-sensitive in our task consistent with a mean-variance trade-off in effort, thereby, underlining the importance of risk-sensitivity in computational models of sensorimotor control.
Resumo:
In this paper we compare Multi-Layer Perceptrons (a neural network type) with Multivariate Linear Regression in predicting birthweight from nine perinatal variables which are thought to be related. Results show, that seven of the nine variables, i.e., gestational age, mother's body-mass index (BMI), sex of the baby, mother's height, smoking, parity and gravidity, are related to birthweight. We found no significant relationship between birthweight and each of the two variables, i.e., maternal age and social class.
Resumo:
In order to minimize the number of iterations to a turbine design, reasonable choices of the key parameters must be made at the earliest possible opportunity. The choice of blade loading is of particular concern in the low pressure (LP) turbine of civil aero engines, where the use of high-lift blades is widespread. This paper presents an analytical mean-line design study for a repeating-stage, axial-flow Low Pressure (LP) turbine. The problem of how to measure blade loading is first addressed. The analysis demonstrates that the Zweifel coefficient [1] is not a reasonable gauge of blade loading because it inherently depends on the flow angles. A more appropriate coefficient based on blade circulation is proposed. Without a large set of turbine test data it is not possible to directly evaluate the accuracy of a particular loss correlation. The analysis therefore focuses on the efficiency trends with respect to flow coefficient, stage loading, lift coefficient and Reynolds number. Of the various loss correlations examined, those based on Ainley and Mathieson ([2], [3], [4]) do not produce realistic trends. The profile loss model of Coull and Hodson [5] and the secondary loss models of Craig and Cox [6] and Traupel [7] gave the most reasonable results. The analysis suggests that designs with the highest flow turning are the least sensitive to increases in blade loading. The increase in Reynolds number lapse with loading is also captured, achieving reasonable agreement with experiments. Copyright © 2011 by ASME.
Resumo:
In order to minimize the number of iterations to a turbine design, reasonable choices of the key parameters must be made at the preliminary design stage. The choice of blade loading is of particular concern in the low pressure (LP) turbine of civil aero engines, where the use of high-lift blades is widespread. This paper considers how blade loading should be measured, compares the performance of various loss correlations, and explores the impact of blade lift on performance and lapse rates. To these ends, an analytical design study is presented for a repeating-stage, axial-flow LP turbine. It is demonstrated that the long-established Zweifel lift coefficient (Zweifel, 1945, "The Spacing of Turbomachine Blading, Especially with Large Angular Deflection" Brown Boveri Rev., 32(1), pp. 436-444) is flawed because it does not account for the blade camber. As a result the Zweifel coefficient is only meaningful for a fixed set of flow angles and cannot be used as an absolute measure of blade loading. A lift coefficient based on circulation is instead proposed that accounts for the blade curvature and is independent of the flow angles. Various existing profile and secondary loss correlations are examined for their suitability to preliminary design. A largely qualitative comparison demonstrates that the loss correlations based on Ainley and Mathieson (Ainley and Mathieson, 1957, "A Method of Performance Estimation for Axial-Flow Turbines," ARC Reports and Memoranda No. 2974; Dunham and Came, 1970, "Improvements to the Ainley-Mathieson Method of Turbine Performance Prediction," Trans. ASME: J. Eng. Gas Turbines Power, July, pp. 252-256; Kacker and Okapuu, 1982, "A Mean Line Performance Method for Axial Flow Turbine Efficiency," J. Eng. Power, 104, pp. 111-119). are not realistic, while the profile loss model of Coull and Hodson (Coull and Hodson, 2011, "Predicting the Profile Loss of High-Lift Low Pressure Turbines," J. Turbomach., 134(2), pp. 021002) and the secondary loss model of (Traupel, W, 1977, Thermische Turbomaschinen, Springer-Verlag, Berlin) are arguably the most reasonable. A quantitative comparison with multistage rig data indicates that, together, these methods over-predict lapse rates by around 30%, highlighting the need for improved loss models and a better understanding of the multistage environment. By examining the influence of blade lift across the Smith efficiency chart, the analysis demonstrates that designs with higher flow turning will tend to be less sensitive to increases in blade loading. © 2013 American Society of Mechanical Engineers.