16 resultados para Real-time data acquisition

em Cambridge University Engineering Department Publications Database


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Cheap to make and easy to shape, Magnesium Diboride (MgB2) throws the field of applied superconductivity wide open. Great efforts have been made to develop a super-conducting fault current limiter (SFCL) using MgB 2. With a superconducting transition temperature of 39 K, MgB 2 can be conveniently cooled with commercial cryocoolers. A cryogenic desktop test system, an ac pulse generation system and a real time data acquisition program in LabView/DAQmx were developed to investigate the quench behavior of MgB2 wires under pulse overcurrents at 25 K in self-field conditions. The experimental results on the current limitation behavior show the possibilities for using MgB2 for future SFCL applications. © 2007 IEEE.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A laboratory scale desktop test system including a cryogenic system, an AC pulse generation system and a real time data acquisition program in LabView/DAQmx, has been developed to evaluate the quench properties of MgB 2 wires as an element in a superconducting fault current limiter under pulse overcurrents at 25K in self-field conditions. The MgB2 samples started from a superconducting state and demonstrated good current limiting properties characterized by a fast transition to the normal state during the first half of the cycle and a continuously limiting effect in the subsequent cycles without burnouts. The experimental and numerical simulation results on the quench behaviour indicate the feasibility of using MgB 2 for future superconducting fault current limiter (SFCL) applications. © IOP Publishing Ltd.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This paper describes results obtained using the modified Kanerva model to perform word recognition in continuous speech after being trained on the multi-speaker Alvey 'Hotel' speech corpus. Theoretical discoveries have recently enabled us to increase the speed of execution of part of the model by two orders of magnitude over that previously reported by Prager & Fallside. The memory required for the operation of the model has been similarly reduced. The recognition accuracy reaches 95% without syntactic constraints when tested on different data from seven trained speakers. Real time simulation of a model with 9,734 active units is now possible in both training and recognition modes using the Alvey PARSIFAL transputer array. The modified Kanerva model is a static network consisting of a fixed nonlinear mapping (location matching) followed by a single layer of conventional adaptive links. A section of preprocessed speech is transformed by the non-linear mapping to a high dimensional representation. From this intermediate representation a simple linear mapping is able to perform complex pattern discrimination to form the output, indicating the nature of the speech features present in the input window.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Real-time acquisition of EMG during functional MRI (fMRI) provides a novel method of controlling motor experiments in the scanner using feedback of EMG. Because of the redundancy in the human muscle system, this is not possible from recordings of joint torque and kinematics alone, because these provide no information about individual muscle activation. This is particularly critical during brain imaging because brain activations are not only related to joint torques and kinematics but are also related to individual muscle activation. However, EMG collected during imaging is corrupted by large artifacts induced by the varying magnetic fields and radio frequency (RF) pulses in the scanner. Methods proposed in literature for artifact removal are complex, computationally expensive, and difficult to implement for real-time noise removal. We describe an acquisition system and algorithm that enables real-time acquisition for the first time. The algorithm removes particular frequencies from the EMG spectrum in which the noise is concentrated. Although this decreases the power content of the EMG, this method provides excellent estimates of EMG with good resolution. Comparisons show that the cleaned EMG obtained with the algorithm is, like actual EMG, very well correlated with joint torque and can thus be used for real-time visual feedback during functional studies.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

On-body sensor systems for sport are challenging since the sensors must be lightweight and small to avoid discomfort, and yet robust and highly accurate to withstand and capture the fast movements associated with sport. In this work, we detail our experience of building such an on-body system for track athletes. The paper describes the design, implementation and deployment of an on-body sensor system for sprint training sessions. We autonomously profile sprints to derive quantitative metrics to improve training sessions. Inexpensive Force Sensitive Resistors (FSRs) are used to capture foot events that are subsequently analysed and presented back to the coach. We show how to identify periods of sprinting from the FSR data and how to compute metrics such as ground contact time. We evaluate our system using force plates and show that millisecond-level accuracy is achievable when estimating contact times. © 2012 Elsevier B.V. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Infrastructure spatial data, such as the orientation and the location of in place structures and these structures' boundaries and areas, play a very important role for many civil infrastructure development and rehabilitation applications, such as defect detection, site planning, on-site safety assistance and others. In order to acquire these data, a number of modern optical-based spatial data acquisition techniques can be used. These techniques are based on stereo vision, optics, time of flight, etc., and have distinct characteristics, benefits and limitations. The main purpose of this paper is to compare these infrastructure optical-based spatial data acquisition techniques based on civil infrastructure application requirements. In order to achieve this goal, the benefits and limitations of these techniques were identified. Subsequently, these techniques were compared according to applications' requirements, such as spatial accuracy, the automation of acquisition, the portability of devices and others. With the help of this comparison, unique characteristics of these techniques were identified so that practitioners will be able to select an appropriate technique for their own applications.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Infrastructure spatial data, such as the orientation and the location of in place structures and these structures' boundaries and areas, play a very important role for many civil infrastructure development and rehabilitation applications, such as defect detection, site planning, on-site safety assistance and others. In order to acquire these data, a number of modern optical-based spatial data acquisition techniques can be used. These techniques are based on stereo vision, optics, time of flight, etc., and have distinct characteristics, benefits and limitations. The main purpose of this paper is to compare these infrastructure optical-based spatial data acquisition techniques based on civil infrastructure application requirements. In order to achieve this goal, the benefits and limitations of these techniques were identified. Subsequently, these techniques were compared according to applications' requirements, such as spatial accuracy, the automation of acquisition, the portability of devices and others. With the help of this comparison, unique characteristics of these techniques were identified so that practitioners will be able to select an appropriate technique for their own applications.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

First responders are in danger when they perform tasks in damaged buildings after earthquakes. Structural collapse due to the failure of critical load bearing structural members (e.g. columns) during a post-earthquake event such as an aftershock can make first responders victims, considering they are unable to assess the impact of the damage inflicted in load bearing members. The writers here propose a method that can provide first responders with a crude but quick estimate of the damage inflicted in load bearing members. Under the proposed method, critical structural members (reinforced concrete columns in this study) are identified from digital visual data and the damage superimposed on these structural members is detected with the help of Visual Pattern Recognition techniques. The correlation of the two (e.g. the position, orientation and size of a crack on the surface of a column) is used to query a case-based reasoning knowledge base, which contains apriori classified states of columns according to the damage inflicted on them. When query results indicate the column's damage state is severe, the method assumes that a structural collapse is likely and first responders are warned to evacuate.