9 resultados para Real Root Isolation Methods

em Cambridge University Engineering Department Publications Database


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Most modern design codes do not allow for movement between a shallow foundation and the underlying soil during seismic loading. Consequently, the full magnitude of seismic energy is transmitted from the soil to the foundation during an earthquake. This energy either has to be dissipated before reaching the superstructure via engineering solutions such as base isolation systems, or the structure itself must withstand the full impact of the earthquake resulting in high material usage and expensive design. However, the inherent hysteric behaviour of soil can be used to isolate a foundation from the underlying soil. As part of a study into the soil-structure-interaction of shallow foundations, methods to optimise foundation isolation were investigated. In this paper the results from centrifuge tests investigating two of these methods are compared to results when no special foundation layout was implemented and the impact of the proposed isolation methods is discussed. © 2010 Taylor & Francis Group, London.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Real-time acquisition of EMG during functional MRI (fMRI) provides a novel method of controlling motor experiments in the scanner using feedback of EMG. Because of the redundancy in the human muscle system, this is not possible from recordings of joint torque and kinematics alone, because these provide no information about individual muscle activation. This is particularly critical during brain imaging because brain activations are not only related to joint torques and kinematics but are also related to individual muscle activation. However, EMG collected during imaging is corrupted by large artifacts induced by the varying magnetic fields and radio frequency (RF) pulses in the scanner. Methods proposed in literature for artifact removal are complex, computationally expensive, and difficult to implement for real-time noise removal. We describe an acquisition system and algorithm that enables real-time acquisition for the first time. The algorithm removes particular frequencies from the EMG spectrum in which the noise is concentrated. Although this decreases the power content of the EMG, this method provides excellent estimates of EMG with good resolution. Comparisons show that the cleaned EMG obtained with the algorithm is, like actual EMG, very well correlated with joint torque and can thus be used for real-time visual feedback during functional studies.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This article presents results from conventional creep tests (CCT) and two accelerated test methods (the stepped isothermal method (SIM) and the stepped isostress method (SSM)) to determine the creep and creep-rupture behavior of two different aramid fibers, Kevlar 49 and Technora. CCT are regarded as the true behavior of the yarn, but they are impractical for long-term use where failures are expected only after many years. All the tests were carried out on the same batches of yarns, and using the same clamping arrangements, so the tests should be directly comparable. For both materials, SIM testing gives good agreement with CCT and gave stress-rupture lifetimes that followed the same trend. However, there was significant variation for SSM testing, especially when testing Technora fibers. The results indicate that Kevlar has a creep strain capacity that is almost independent of stress, whereas Technora shows a creep strain capacity that depends on stress. Its creep strain capacity is approximately two to three times that of Kevlar 49. The accelerated test methods give indirect estimates for the activation energy and the activation volume of the fibers. The activation energy for Technora is about 20% higher than that for Kevlar, meaning that it is less sensitive to the effects of increasing temperature. The activation volume for both materials was similar, and in both cases, stress dependent. Copyright © 2012 Wiley Periodicals, Inc.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

There are several reasons for monitoring of underground structures and they have already been discussed many times, e.g. from the view of ageing or state after accidental event like flooding of Prague metro in 2002. Monitoring of Prague metro is realized in the framework of international research project sponsored by ESF-S3T. The monitoring methods used in Prague are either classical one or new or developing one. The reason for different monitoring methods is the different precision of each method and also for cross-checking between them and their evaluation. Namely we use convergence, tiltmetres, crackmetres, geophysical methods, laser scanning, computer vision and finally installation of MEMS monitoring devices. In the paper more details of each method and obtained results will be presented. The monitoring methods are complemented by wireless data collection and transfer for real-time monitoring. © 2012 Taylor & Francis Group.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Optical motion capture systems suffer from marker occlusions resulting in loss of useful information. This paper addresses the problem of real-time joint localisation of legged skeletons in the presence of such missing data. The data is assumed to be labelled 3d marker positions from a motion capture system. An integrated framework is presented which predicts the occluded marker positions using a Variable Turn Model within an Unscented Kalman filter. Inferred information from neighbouring markers is used as observation states; these constraints are efficient, simple, and real-time implementable. This work also takes advantage of the common case that missing markers are still visible to a single camera, by combining predictions with under-determined positions, resulting in more accurate predictions. An Inverse Kinematics technique is then applied ensuring that the bone lengths remain constant over time; the system can thereby maintain a continuous data-flow. The marker and Centre of Rotation (CoR) positions can be calculated with high accuracy even in cases where markers are occluded for a long period of time. Our methodology is tested against some of the most popular methods for marker prediction and the results confirm that our approach outperforms these methods in estimating both marker and CoR positions. © 2012 Springer-Verlag.