29 resultados para Rate Equation (Re) Model
em Cambridge University Engineering Department Publications Database
Resumo:
This paper reports a detailed theoretical study of the dynamics of wavelength conversion using cross-gain and cross-phase modulation in semiconductor optical amplifiers (SOA's) involving a large signal, multisection rate equation model. Using this model, recently reported experimental results have been correctly predicted and the effects of electrical and optical pumping on the conversion speed, modulation index, and phase variation of the converted signal have been considered. The model predicts, in agreement with experimental data, that recovery rates as low as 12 ps are possible if signal and pump powers in excess of 14 dBm are used. It also indicates that conversion speeds up to 40 Gb/s may be achieved with less than 3 dB dynamic penalty. The employment of cross-phase modulation increases the speed allowing, for example, an improvement to 60 Gb/s with an excess loss penalty less than 1 dB.
Resumo:
Active control has been shown as a feasible technology for suppressing thermoacoustic instability in continuous combustion systems, and the control strategy design is substantially dependent on the reliability of the flame model. In this paper, refinement of G-equation flame model for the dynamics of lean premixed combustion is investigated. Precisely, the dynamics between the flame speed S_u and equivalence ratio phi are proposed based on numerical calculations and physical explanations. Finally, the developed model is tested on one set of experimental data.
Resumo:
High-resolution time resolved transmittivity measurements on horizontally aligned free-standing multi-walled carbon nanotubes reveal a different electronic transient behavior from that of graphite. This difference is ascribed to the presence of discrete energy states in the multishell carbon nanotube electronic structure. Probe polarization dependence suggests that the optical transitions involve definite selection rules. The origin of these states is discussed and a rate equation model is proposed to rationalize our findings. © 2013 Elsevier Ltd. All rights reserved.
Resumo:
The response of clay is highly dependent on straining and loading rate. To obtain a realistic prediction of the response for time dependent problems, it is essential to use a model that accounts for rate effects in the stress-strain-strength properties of soils. The proposed model has been expanded from the existing SIMPLE DSS framework to account for the strain rate effects on clays in simple shear conditions. In accordance with the findings in the existing literature, soil response displays a unique relationship between shear strength and strain rate. The predicting model is illustrated with a limited test data. Copyright ASCE 2006.
Resumo:
The feasibility of using AlGaInAs lasers for high-speed modulation at high temperatures was evaluated and compared with performance of GaInAsP devices. Both drift-diffusion and rate equation simulation were involved so that the temperature dependence of material parameters was found in terms of overall dynamic performance. Differential gain was estimated by means of drift-diffusion simulations.
Resumo:
Nonequilibrium spin distributions in single GaAs/AlGaAs core-shell nanowires are excited using resonant polarized excitation at 10 K. At all excitation energies, we observe strong photoluminescence polarization due to suppressed radiative recombination of excitons with dipoles aligned perpendicular to the nanowire. Excitation resonances are observed at 1- or 2-LO phonon energies above the exciton ground states. Using rate equation modeling, we show that, at the lowest energies, strongly nonequilibrium spin distributions are present and we estimate their spin relaxation rate.
Resumo:
The magnetisation of bulk high temperature superconductors (HTS), such as RE-Ba-Cu-O [(RE)BCO, where RE is a rare earth element or Y], by a practical technique is essential for their application in high field, permanent magnet-like devices. Research to-date into the pulsed field magnetisation (PFM) of these materials, however, has been limited generally to experimental techniques, with relatively little progress in the development of theoretical models. This is because not only is a multi-physics approach needed to take account of the heating of the samples but also the high electric fields generated are well above the regime in which there are reliable experimental results. This paper describes a framework of theoretical simulation using the finite element method (FEM) that is applicable to both single- and multi-pulse magnetisation processes of (RE)BCO bulk superconductors. The model incorporates the heat equation and provides a convenient way of determining the distribution of trapped field, current density and temperature change within a bulk superconductor at each stage of the magnetisation process. An example of the single-pulse magnetisation of a (RE)BCO bulk is described. Potentially, the model may serve as a cost-effective tool for the optimisation of the bulk geometry and the magnetisation profile in multi-pulse magnetisation processes. © 2010 IOP Publishing Ltd.