19 resultados para Rank and file unionism
em Cambridge University Engineering Department Publications Database
Resumo:
The sustainable remediation concept, aimed at maximizing the net environmental, social, and economic benefits in contaminated site remediation, is being increasingly recognized by industry, governments, and academia. However, there is limited understanding of actual sustainable behaviour being adopted and the determinants of such sustainable behaviour. The present study identified 27 sustainable practices in remediation. An online questionnaire survey was used to rank and compare them in the US (n=112) and the UK (n=54). The study also rated ten promoting factors, nine barriers, and 17 types of stakeholders' influences. Subsequently, factor analysis and general linear models were used to determine the effects of internal characteristics (i.e. country, organizational characteristics, professional role, personal experience and belief) and external forces (i.e. promoting factors, barriers, and stakeholder influences). It was found that US and UK practitioners adopted many sustainable practices to similar extents. Both US and UK practitioners perceived the most effectively adopted sustainable practices to be reducing the risk to site workers, protecting groundwater and surface water, and reducing the risk to the local community. Comparing the two countries, we found that the US adopted innovative in-situ remediation more effectively; while the UK adopted reuse, recycling, and minimizing material usage more effectively. As for the overall determinants of sustainable remediation, the country of origin was found not to be a significant determinant. Instead, organizational policy was found to be the most important internal characteristic. It had a significant positive effect on reducing distant environmental impact, sustainable resource usage, and reducing remediation cost and time (p<0.01). Customer competitive pressure was found to be the most extensively significant external force. In comparison, perceived stakeholder influence, especially that of primary stakeholders (site owner, regulator, and primary consultant), did not appear to have as extensive a correlation with the adoption of sustainability as one would expect.
Resumo:
Optimization on manifolds is a rapidly developing branch of nonlinear optimization. Its focus is on problems where the smooth geometry of the search space can be leveraged to design effcient numerical algorithms. In particular, optimization on manifolds is well-suited to deal with rank and orthogonality constraints. Such structured constraints appear pervasively in machine learning applications, including low-rank matrix completion, sensor network localization, camera network registration, independent component analysis, metric learning, dimensionality reduction and so on. The Manopt toolbox, available at www.manopt.org, is a user-friendly, documented piece of software dedicated to simplify experimenting with state of the art Riemannian optimization algorithms. By dealing internally with most of the differential geometry, the package aims particularly at lowering the entrance barrier. © 2014 Nicolas Boumal.
Resumo:
This paper introduces a new metric and mean on the set of positive semidefinite matrices of fixed-rank. The proposed metric is derived from a well-chosen Riemannian quotient geometry that generalizes the reductive geometry of the positive cone and the associated natural metric. The resulting Riemannian space has strong geometrical properties: it is geodesically complete, and the metric is invariant with respect to all transformations that preserve angles (orthogonal transformations, scalings, and pseudoinversion). A meaningful approximation of the associated Riemannian distance is proposed, that can be efficiently numerically computed via a simple algorithm based on SVD. The induced mean preserves the rank, possesses the most desirable characteristics of a geometric mean, and is easy to compute. © 2009 Society for Industrial and Applied Mathematics.
Resumo:
Motivated by the problem of learning a linear regression model whose parameter is a large fixed-rank non-symmetric matrix, we consider the optimization of a smooth cost function defined on the set of fixed-rank matrices. We adopt the geometric framework of optimization on Riemannian quotient manifolds. We study the underlying geometries of several well-known fixed-rank matrix factorizations and then exploit the Riemannian quotient geometry of the search space in the design of a class of gradient descent and trust-region algorithms. The proposed algorithms generalize our previous results on fixed-rank symmetric positive semidefinite matrices, apply to a broad range of applications, scale to high-dimensional problems, and confer a geometric basis to recent contributions on the learning of fixed-rank non-symmetric matrices. We make connections with existing algorithms in the context of low-rank matrix completion and discuss the usefulness of the proposed framework. Numerical experiments suggest that the proposed algorithms compete with state-of-the-art algorithms and that manifold optimization offers an effective and versatile framework for the design of machine learning algorithms that learn a fixed-rank matrix. © 2013 Springer-Verlag Berlin Heidelberg.
Resumo:
A chemical looping process using the redox reactions of iron oxide has been used to produce separate streams of pure H2 and CO2 from a solid fuel. An iron oxide carrier prepared using a mechanical mixing technique and comprised of 100wt.% Fe2O3 was used. It was demonstrated that hydrogen can be produced from three representative coals - a Russian bituminous, a German lignite and a UK sub-bituminous coal. Depending on the fuel, pure H2 with [CO] ≲50vol.ppm can be obtained from the proposed process. The cyclic stability of the iron oxide carrier was not adversely affected by contaminants found in syngas which are gaseous above 273K. Stable quantities of H2 were produced over five cycles for all three coals investigated. Independent of the fuel, SO2 was not formed during the oxidation with steam, i.e. the produced H2 was not contaminated with SO2. Since oxidation with air removes contaminants and generates useful heat and pure N2 for purging, it should be included in the operating cycle. Overall, it was demonstrated that the proposed process may be an attractive approach to upgrade crude syngas produced by the gasification of low-rank coals to pure H2, representing a substantial increase in calorific value, whilst simultaneous capturing CO2, a greenhouse gas. © 2010 Elsevier B.V.
Resumo:
Cluster analysis of ranking data, which occurs in consumer questionnaires, voting forms or other inquiries of preferences, attempts to identify typical groups of rank choices. Empirically measured rankings are often incomplete, i.e. different numbers of filled rank positions cause heterogeneity in the data. We propose a mixture approach for clustering of heterogeneous rank data. Rankings of different lengths can be described and compared by means of a single probabilistic model. A maximum entropy approach avoids hidden assumptions about missing rank positions. Parameter estimators and an efficient EM algorithm for unsupervised inference are derived for the ranking mixture model. Experiments on both synthetic data and real-world data demonstrate significantly improved parameter estimates on heterogeneous data when the incomplete rankings are included in the inference process.
Resumo:
Most previous work on trainable language generation has focused on two paradigms: (a) using a statistical model to rank a set of generated utterances, or (b) using statistics to inform the generation decision process. Both approaches rely on the existence of a handcrafted generator, which limits their scalability to new domains. This paper presents BAGEL, a statistical language generator which uses dynamic Bayesian networks to learn from semantically-aligned data produced by 42 untrained annotators. A human evaluation shows that BAGEL can generate natural and informative utterances from unseen inputs in the information presentation domain. Additionally, generation performance on sparse datasets is improved significantly by using certainty-based active learning, yielding ratings close to the human gold standard with a fraction of the data. © 2010 Association for Computational Linguistics.
Resumo:
A diverse group of experts proposed the 9 grand challenges outlined in this booklet. This expert task force was assembled by the ASCE TCCIT Data Sensing and Analysis (DSA) Committee and endorsed by the TRB AFH10(1) Construction IT joint subcommittee at the request of their membership. The task force did not rank the challenges selected, nor did it endorse particular approaches to meeting them. Rather than attempt to include every important goal for data sensing and analysis, the panel chose opportunities that were both achievable and sustainable to help people and the planet thrive. The panel’s conclusions were reviewed by several subject-matter experts. The DSA is offering an opportunity to comment on the challenges by contacting the task force chair via email at becerik@usc.edu.
Identifying cancer subtypes in glioblastoma by combining genomic, transcriptomic and epigenomic data
Resumo:
We present a nonparametric Bayesian method for disease subtype discovery in multi-dimensional cancer data. Our method can simultaneously analyse a wide range of data types, allowing for both agreement and disagreement between their underlying clustering structure. It includes feature selection and infers the most likely number of disease subtypes, given the data. We apply the method to 277 glioblastoma samples from The Cancer Genome Atlas, for which there are gene expression, copy number variation, methylation and microRNA data. We identify 8 distinct consensus subtypes and study their prognostic value for death, new tumour events, progression and recurrence. The consensus subtypes are prognostic of tumour recurrence (log-rank p-value of $3.6 \times 10^{-4}$ after correction for multiple hypothesis tests). This is driven principally by the methylation data (log-rank p-value of $2.0 \times 10^{-3}$) but the effect is strengthened by the other 3 data types, demonstrating the value of integrating multiple data types. Of particular note is a subtype of 47 patients characterised by very low levels of methylation. This subtype has very low rates of tumour recurrence and no new events in 10 years of follow up. We also identify a small gene expression subtype of 6 patients that shows particularly poor survival outcomes. Additionally, we note a consensus subtype that showly a highly distinctive data signature and suggest that it is therefore a biologically distinct subtype of glioblastoma. The code is available from https://sites.google.com/site/multipledatafusion/
Resumo:
The generalization of the geometric mean of positive scalars to positive definite matrices has attracted considerable attention since the seminal work of Ando. The paper generalizes this framework of matrix means by proposing the definition of a rank-preserving mean for two or an arbitrary number of positive semi-definite matrices of fixed rank. The proposed mean is shown to be geometric in that it satisfies all the expected properties of a rank-preserving geometric mean. The work is motivated by operations on low-rank approximations of positive definite matrices in high-dimensional spaces.© 2012 Elsevier Inc. All rights reserved.
Resumo:
This paper addresses the problem of low-rank distance matrix completion. This problem amounts to recover the missing entries of a distance matrix when the dimension of the data embedding space is possibly unknown but small compared to the number of considered data points. The focus is on high-dimensional problems. We recast the considered problem into an optimization problem over the set of low-rank positive semidefinite matrices and propose two efficient algorithms for low-rank distance matrix completion. In addition, we propose a strategy to determine the dimension of the embedding space. The resulting algorithms scale to high-dimensional problems and monotonically converge to a global solution of the problem. Finally, numerical experiments illustrate the good performance of the proposed algorithms on benchmarks. © 2011 IEEE.