98 resultados para Range Limits

em Cambridge University Engineering Department Publications Database


Relevância:

30.00% 30.00%

Publicador:

Resumo:

The loss mechanisms which control 2D incidence range are discussed with an emphasis on determining which real in-service geometric variations will have the largest impact. For the majority of engine compressor blades (Minlet>0.55) both the negative and positive incidence limits are controlled by supersonic patches. It is shown that these patches are highly sensitive to the geometric variations close to, and around the leading edge. The variations used in this study were measured from newly manufactured as well as ex-service blades. Over most the high pressure compressor considered, it was shown that manufacture variations dominated. The first part of the paper shows that, despite large geometric variations (~10% of leading edge thickness), the incidence range responded in a linear way. The result of this is that the geometric variations have little effect on the mean incidence range of a row of blades. In the second part of the paper a region of the design space is identified where non-linear behavior can result in a 10% reduction in positive incidence range. The mechanism for this is reported and design guidelines for its avoidance offered. In the final part of the paper, the linear behavior at negative incidence and the transonic nature of the flow is exploited to design a robust asymmetric leading edge with a 5% increase in incidence range.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This paper reports the fabrication and electrical characterization of high tuning range AlSi RF MEMS capacitors. We present experimental results obtained by a surface micromachining process that uses dry etching of sacrificial amorphous silicon to release Al-1%Si membranes and has a low thermal budget (<450 °C) being compatible with CMOS post-processing. The proposed silicon sacrificial layer dry etching (SSLDE) process is able to provide very high Si etch rates (3-15 μm/min, depending on process parameters) with high Si: SiO2 selectivity (>10,000:1). Single- and double-air-gap MEMS capacitors, as well as some dedicated test structures needed to calibrate the electro-mechanical parameters and explore the reliability of the proposed technology, have been fabricated with the new process. S-parameter measurements from 100 MHz up to 2 GHz have shown a capacitance tuning range higher than 100% with the double-air-gap architecture. The tuning range can be enlarged with a proper DC electrical bias of the capacitor electrodes. Finally, the reported results make the proposed MEMS tuneable capacitor a good candidate for above-IC integration in communications applications. © 2004 Elsevier B.V. All rights reserved.