119 resultados para Random real

em Cambridge University Engineering Department Publications Database


Relevância:

30.00% 30.00%

Publicador:

Resumo:

Predicting the response of a structure following an impact is of interest in situations where parts of a complex assembly may come into contact. Standard approaches are based on the knowledge of the impulse response function, requiring the knowledge of the modes and the natural frequencies of the structure. In real engineering structures the statistics of higher natural frequencies follows those of the Gaussian Orthogonal Ensemble, this allows the application of random point process theory to get a mean impulse response function by the knowledge of the modal density of the structure. An ensemble averaged time history for both the response and the impact force can be predicted. Once the impact characteristics are known in the time domain, a simple Fourier Transform allows the frequency range of the impact excitation to be calculated. Experimental and numerical results for beams, plates, and cylinders are presented to confirm the validity of the method.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We present Random Partition Kernels, a new class of kernels derived by demonstrating a natural connection between random partitions of objects and kernels between those objects. We show how the construction can be used to create kernels from methods that would not normally be viewed as random partitions, such as Random Forest. To demonstrate the potential of this method, we propose two new kernels, the Random Forest Kernel and the Fast Cluster Kernel, and show that these kernels consistently outperform standard kernels on problems involving real-world datasets. Finally, we show how the form of these kernels lend themselves to a natural approximation that is appropriate for certain big data problems, allowing $O(N)$ inference in methods such as Gaussian Processes, Support Vector Machines and Kernel PCA.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Copyright 2014 by the author(s). We present a nonparametric prior over reversible Markov chains. We use completely random measures, specifically gamma processes, to construct a countably infinite graph with weighted edges. By enforcing symmetry to make the edges undirected we define a prior over random walks on graphs that results in a reversible Markov chain. The resulting prior over infinite transition matrices is closely related to the hierarchical Dirichlet process but enforces reversibility. A reinforcement scheme has recently been proposed with similar properties, but the de Finetti measure is not well characterised. We take the alternative approach of explicitly constructing the mixing measure, which allows more straightforward and efficient inference at the cost of no longer having a closed form predictive distribution. We use our process to construct a reversible infinite HMM which we apply to two real datasets, one from epigenomics and one ion channel recording.

Relevância:

20.00% 20.00%

Publicador:

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Standard algorithms in tracking and other state-space models assume identical and synchronous sampling rates for the state and measurement processes. However, real trajectories of objects are typically characterized by prolonged smooth sections, with sharp, but infrequent, changes. Thus, a more parsimonious representation of a target trajectory may be obtained by direct modeling of maneuver times in the state process, independently from the observation times. This is achieved by assuming the state arrival times to follow a random process, typically specified as Markovian, so that state points may be allocated along the trajectory according to the degree of variation observed. The resulting variable dimension state inference problem is solved by developing an efficient variable rate particle filtering algorithm to recursively update the posterior distribution of the state sequence as new data becomes available. The methodology is quite general and can be applied across many models where dynamic model uncertainty occurs on-line. Specific models are proposed for the dynamics of a moving object under internal forcing, expressed in terms of the intrinsic dynamics of the object. The performance of the algorithms with these dynamical models is demonstrated on several challenging maneuvering target tracking problems in clutter. © 2006 IEEE.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We describe developments in the integration of analyte specific holographic sensors into PDMS-based microfluidic devices for the purpose of continuous, low-impact monitoring of extra-cellular change in micro-bioreactors. Holographic sensors respond to analyte concentration via volume change, which makes their reduction in size and integration into spatially confined fluidics difficult. Through design and process modification many of these constraints have been addressed, and a microfluidics-based device capable of real-time monitoring of the pH change caused by Lactobacillus casei fermentation is presented as a general proof-of-concept for a wide array of possible devices.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This paper is concerned with the response statistics of a dynamic system that has random properties. The frequency-band-averaged energy of the system is considered, and a closed form expression is derived for the relative variance of this quantity. The expression depends upon three parameters: the modal overlap factor m, a bandwidth parameter B, and a parameter α that defines the nature of the loading (for example single point forcing or rain-on-the-roof loading). The result is applicable to any single structural component or acoustic volume, and a comparison is made here with simulation results for a mass loaded plate. Good agreement is found between the simulations and the theory. © 2003 Published by Elsevier Ltd.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This paper is concerned with the ensemble statistics of the response to harmonic excitation of a single dynamic system such as a plate or an acoustic volume. Random point process theory is employed, and various statistical assumptions regarding the system natural frequencies are compared, namely: (i) Poisson natural frequency spacings, (ii) statistically independent Rayleigh natural frequency spacings, and (iii) natural frequency spacings conforming to the Gaussian orthogonal ensemble (GOE). The GOE is found to be the most realistic assumption, and simple formulae are derived for the variance of the energy of the system under either point loading or rain-on-the-roof excitation. The theoretical results are compared favourably with numerical simulations and experimental data for the case of a mass loaded plate. © 2003 Elsevier Ltd. All rights reserved.