1 resultado para Railroad Strike, Calif., 1894.
em Cambridge University Engineering Department Publications Database
Filtro por publicador
- Academic Archive On-line (Stockholm University; Sweden) (1)
- Acceda, el repositorio institucional de la Universidad de Las Palmas de Gran Canaria. España (1)
- AMS Tesi di Dottorato - Alm@DL - Università di Bologna (2)
- AMS Tesi di Laurea - Alm@DL - Università di Bologna (2)
- Aquatic Commons (4)
- Archimer: Archive de l'Institut francais de recherche pour l'exploitation de la mer (1)
- Archive of European Integration (2)
- Archivo Digital para la Docencia y la Investigación - Repositorio Institucional de la Universidad del País Vasco (1)
- Biblioteca Digital da Câmara dos Deputados (1)
- Biblioteca Digital da Produção Intelectual da Universidade de São Paulo (2)
- Biblioteca Digital de Teses e Dissertações Eletrônicas da UERJ (1)
- Biblioteca Digital Loyola - Universidad de Deusto (1)
- Biblioteca Valenciana Digital - Ministerio de Educación, Cultura y Deporte - Valencia - Espanha (6)
- Bibloteca do Senado Federal do Brasil (1)
- Biodiversity Heritage Library, United States (2)
- BORIS: Bern Open Repository and Information System - Berna - Suiça (9)
- Brock University, Canada (13)
- Bucknell University Digital Commons - Pensilvania - USA (4)
- Cambridge University Engineering Department Publications Database (1)
- CentAUR: Central Archive University of Reading - UK (2)
- Center for Jewish History Digital Collections (3)
- Chinese Academy of Sciences Institutional Repositories Grid Portal (1)
- Cornell: DigitalCommons@ILR (1)
- Dalarna University College Electronic Archive (1)
- Digital Commons - Michigan Tech (15)
- Digital Commons at Florida International University (3)
- Digital Peer Publishing (1)
- DigitalCommons - The University of Maine Research (2)
- DigitalCommons@University of Nebraska - Lincoln (3)
- Digitale Sammlungen - Goethe-Universität Frankfurt am Main (41)
- DRUM (Digital Repository at the University of Maryland) (1)
- eResearch Archive - Queensland Department of Agriculture; Fisheries and Forestry (3)
- Fachlicher Dokumentenserver Paedagogik/Erziehungswissenschaften (1)
- Gallica, Bibliotheque Numerique - Bibliothèque nationale de France (French National Library) (BnF), France (31)
- Harvard University (18)
- Helda - Digital Repository of University of Helsinki (1)
- Illinois Digital Environment for Access to Learning and Scholarship Repository (1)
- Indian Institute of Science - Bangalore - Índia (2)
- Iowa Publications Online (IPO) - State Library, State of Iowa (Iowa), United States (2)
- Memoria Académica - FaHCE, UNLP - Argentina (5)
- Memorial University Research Repository (1)
- Ministerio de Cultura, Spain (3)
- Plymouth Marine Science Electronic Archive (PlyMSEA) (1)
- Publishing Network for Geoscientific & Environmental Data (71)
- QSpace: Queen's University - Canada (2)
- QUB Research Portal - Research Directory and Institutional Repository for Queen's University Belfast (12)
- Queensland University of Technology - ePrints Archive (21)
- Repositorio Académico de la Universidad Nacional de Costa Rica (1)
- Repositório Científico da Universidade de Évora - Portugal (1)
- Repositório Institucional UNESP - Universidade Estadual Paulista "Julio de Mesquita Filho" (17)
- School of Medicine, Washington University, United States (5)
- South Carolina State Documents Depository (1)
- Universidad Autónoma de Nuevo León, Mexico (5)
- Universidad de Alicante (1)
- Universidad Politécnica de Madrid (3)
- Universidade Complutense de Madrid (1)
- Universidade de Lisboa - Repositório Aberto (1)
- Universidade Federal do Pará (1)
- Universidade Federal do Rio Grande do Norte (UFRN) (1)
- Université de Montréal, Canada (2)
- Université Laval Mémoires et thèses électroniques (1)
- University of Michigan (623)
- University of Queensland eSpace - Australia (6)
- University of Washington (1)
- WestminsterResearch - UK (1)
Resumo:
It has long been recognised that statistical dependencies in neuronal activity need to be taken into account when decoding stimuli encoded in a neural population. Less studied, though equally pernicious, is the need to take account of dependencies between synaptic weights when decoding patterns previously encoded in an auto-associative memory. We show that activity-dependent learning generically produces such correlations, and failing to take them into account in the dynamics of memory retrieval leads to catastrophically poor recall. We derive optimal network dynamics for recall in the face of synaptic correlations caused by a range of synaptic plasticity rules. These dynamics involve well-studied circuit motifs, such as forms of feedback inhibition and experimentally observed dendritic nonlinearities. We therefore show how addressing the problem of synaptic correlations leads to a novel functional account of key biophysical features of the neural substrate.