73 resultados para ROBOTICS
em Cambridge University Engineering Department Publications Database
Resumo:
At the crossing between motor control neuroscience and robotics system theory, the paper presents a rhythmic experiment that is amenable both to handy laboratory implementation and simple mathematical modeling. The experiment is based on an impact juggling task, requiring the coordination of two upper-limb effectors and some phase-locking with the trajectories of one or several juggled objects. We describe the experiment, its implementation and the mathematical model used for the analysis. Our underlying research focuses on the role of sensory feedback in rhythmic tasks. In a robotic implementation of our experiment, we study the minimum feedback that is required to achieve robust control. A limited source of feedback, measuring only the impact times, is shown to give promising results. A second field of investigation concerns the human behavior in the same impact juggling task. We study how a variation of the tempo induces a transition between two distinct control strategies with different sensory feedback requirements. Analogies and differences between the robotic and human behaviors are obviously of high relevance in such a flexible setup. © 2008 Elsevier Ltd. All rights reserved.
Resumo:
Robotics researchers increasingly agree that ideas from biology and self-organization can strongly benefit the design of autonomous robots. Biological organisms have evolved to perform and survive in a world characterized by rapid changes, high uncertainty, indefinite richness, and limited availability of information. Industrial robots, in contrast, operate in highly controlled environments with no or very little uncertainty. Although many challenges remain, concepts from biologically inspired (bio-inspired) robotics will eventually enable researchers to engineer machines for the real world that possess at least some of the desirable properties of biological organisms, such as adaptivity, robustness, versatility, and agility.
Resumo:
Locomotion has been one of the frequently used case studies in hands-on curricula in robotics education. Students are usually instructed to construct their own wheeled or legged robots from modular robot kits. In the development process of a robot students tend to emphasize on the programming part and consequently, neglect the design of the robot's body. However, the morphology of a robot (i.e. its body shape and material properties) plays an important role especially in dynamic tasks such as locomotion. In this paper we introduce a case study of a tutorial on soft-robotics where students were encouraged to focus solely on the morphology of a robot to achieve stable and fast locomotion. The students should experience the influence material properties exert on the performance of a robot and consequently, extract design principles. This tutorial was held in the context of the 2012 Summer School on Soft Robotics at ETH Zurich, which was one of the world's first courses specialized in the emerging field. We describe the tutorial set-up, the used hardware and software, the students assessment criteria as well as the results. Based on the high creativity and diversity of the robots built by the students, we conclude that the concept of this tutorial has great potentials for both education and research. © 2013 IEEE.
Resumo:
There has been an increasing interest in applying biological principles to the design and control of robots. Unlike industrial robots that are programmed to execute a rather limited number of tasks, the new generation of bio-inspired robots is expected to display a wide range of behaviours in unpredictable environments, as well as to interact safely and smoothly with human co-workers. In this article, we put forward some of the properties that will characterize these new robots: soft materials, flexible and stretchable sensors, modular and efficient actuators, self-organization and distributed control. We introduce a number of design principles; in particular, we try to comprehend the novel design space that now includes soft materials and requires a completely different way of thinking about control. We also introduce a recent case study of developing a complex humanoid robot, discuss the lessons learned and speculate about future challenges and perspectives.
Resumo:
There has been an increasing interest in the use of unconventional materials and morphologies in robotic systems because the underlying mechanical properties (such as body shapes, elasticity, viscosity, softness, density and stickiness) are crucial research topics for our in-depth understanding of embodied intelligence. The detailed investigations of physical system-environment interactions are particularly important for systematic development of technologies and theories of emergent adaptive behaviors. Based on the presentations and discussion in the Future Emerging Technology (fet11) conference, this article introduces the recent technological development in the field of soft robotics, and speculates about the implications and challenges in the robotics and embodied intelligence research. © Selection and peer-review under responsibility of FET11 conference organizers and published by Elsevier B.V.
Resumo:
New robotics is an approach to robotics that, in contrast to traditional robotics, employs ideas and principles from biology. While in the traditional approach there are generally accepted methods (e. g., from control theory), designing agents in the new robotics approach is still largely considered an art. In recent years, we have been developing a set of heuristics, or design principles, that on the one hand capture theoretical insights about intelligent (adaptive) behavior, and on the other provide guidance in actually designing and building systems. In this article we provide an overview of all the principles but focus on the principles of ecological balance, which concerns the relation between environment, morphology, materials, and control, and sensory-motor coordination, which concerns self-generated sensory stimulation as the agent interacts with the environment and which is a key to the development of high-level intelligence. As we argue, artificial evolution together with morphogenesis is not only "nice to have" but is in fact a necessary tool for designing embodied agents.
Resumo:
THERE ARE MANY different kinds of robots: factory automation systems that weld and assemble car engines; machines that place chocolates into boxes; medical devices that support surgeons in operations requiring high-precision manipulation; cars that drive automatically over long distances; vehicles for planetary exploration; mechanisms for powerline or oil platform inspection; toys and educational toolkits for schools and universities; service robots that deliver meals, clean floors, or mow lawns; and "companion robots" that are real partners for humans and share our daily lives. In a sense, all these robots are inspired by biological systems; it's just a matter of degree. A driverless vehicle imitates animals moving autonomously in the world.© 2012 ACM.