232 resultados para REWARD PREDICTION
em Cambridge University Engineering Department Publications Database
Resumo:
Theories of instrumental learning are centred on understanding how success and failure are used to improve future decisions. These theories highlight a central role for reward prediction errors in updating the values associated with available actions. In animals, substantial evidence indicates that the neurotransmitter dopamine might have a key function in this type of learning, through its ability to modulate cortico-striatal synaptic efficacy. However, no direct evidence links dopamine, striatal activity and behavioural choice in humans. Here we show that, during instrumental learning, the magnitude of reward prediction error expressed in the striatum is modulated by the administration of drugs enhancing (3,4-dihydroxy-L-phenylalanine; L-DOPA) or reducing (haloperidol) dopaminergic function. Accordingly, subjects treated with L-DOPA have a greater propensity to choose the most rewarding action relative to subjects treated with haloperidol. Furthermore, incorporating the magnitude of the prediction errors into a standard action-value learning algorithm accurately reproduced subjects' behavioural choices under the different drug conditions. We conclude that dopamine-dependent modulation of striatal activity can account for how the human brain uses reward prediction errors to improve future decisions.
Resumo:
Animals repeat rewarded behaviors, but the physiological basis of reward-based learning has only been partially elucidated. On one hand, experimental evidence shows that the neuromodulator dopamine carries information about rewards and affects synaptic plasticity. On the other hand, the theory of reinforcement learning provides a framework for reward-based learning. Recent models of reward-modulated spike-timing-dependent plasticity have made first steps towards bridging the gap between the two approaches, but faced two problems. First, reinforcement learning is typically formulated in a discrete framework, ill-adapted to the description of natural situations. Second, biologically plausible models of reward-modulated spike-timing-dependent plasticity require precise calculation of the reward prediction error, yet it remains to be shown how this can be computed by neurons. Here we propose a solution to these problems by extending the continuous temporal difference (TD) learning of Doya (2000) to the case of spiking neurons in an actor-critic network operating in continuous time, and with continuous state and action representations. In our model, the critic learns to predict expected future rewards in real time. Its activity, together with actual rewards, conditions the delivery of a neuromodulatory TD signal to itself and to the actor, which is responsible for action choice. In simulations, we show that such an architecture can solve a Morris water-maze-like navigation task, in a number of trials consistent with reported animal performance. We also use our model to solve the acrobot and the cartpole problems, two complex motor control tasks. Our model provides a plausible way of computing reward prediction error in the brain. Moreover, the analytically derived learning rule is consistent with experimental evidence for dopamine-modulated spike-timing-dependent plasticity.
Resumo:
Motor control strongly relies on neural processes that predict the sensory consequences of self-generated actions. Previous research has demonstrated deficits in such sensory-predictive processes in schizophrenic patients and these low-level deficits are thought to contribute to the emergence of delusions of control. Here, we examined the extent to which individual differences in sensory prediction are associated with a tendency towards delusional ideation in healthy participants. We used a force-matching task to quantify sensory-predictive processes, and administered questionnaires to assess schizotypy and delusion-like thinking. Individuals with higher levels of delusional ideation showed more accurate force matching suggesting that such thinking is associated with a reduced tendency to predict and attenuate the sensory consequences of self-generated actions. These results suggest that deficits in sensory prediction in schizophrenia are not simply consequences of the deluded state and are not related to neuroleptic medication. Rather they appear to be stable, trait-like characteristics of an individual, a finding that has important implications for our understanding of the neurocognitive basis of delusions.
Resumo:
Humans appear to have an inherent prosocial tendency toward one another in that we often take pleasure in seeing others succeed. This fact is almost certainly exploited by game shows, yet why watching others win elicits a pleasurable vicarious rewarding feeling in the absence of personal economic gain is unclear. One explanation is that game shows use contestants who have similarities to the viewing population, thereby kindling kin-motivated responses (for example, prosocial behavior). Using a game show-inspired paradigm, we show that the interactions between the ventral striatum and anterior cingulate cortex subserve the modulation of vicarious reward by similarity, respectively. Our results support studies showing that similarity acts as a proximate neurobiological mechanism where prosocial behavior extends to unrelated strangers.
Resumo:
The work in this paper forms part of a project on the use of large eddy simulation (LES) for broadband rotor-stator interaction noise prediction. Here we focus on LES of the flow field near a fan blade trailing edge. The first part of the paper aims to evaluate LES suitability for predicting the near-field velocity field for a blunt NACA-0012 airfoil at moderate Reynolds numbers (2× 10 5 and 4× 10 5). Preliminary computations of turbulent mean and root-mean-square velocities, as well as energy spectra at the trailing edge, are compared with those from a recent experiment.1 The second part of the paper describes preliminary progress on an LES calculation of the fan wakes on a fan rig. 2 The CFD code uses a mixed element unstructured mesh with a median dual control volume. A wall-adapting local eddy-viscosity sub-grid scale model is employed. A very small amount of numerical dissipation is added in the numerical scheme to keep the compressible solver stable. Further results for the fan turbulentmean and RMS velocity, and especially the aeroacoustics field will be presented at a later stage. Copyright © 2008 by Qinling LI, Nigel Peake & Mark Savill.
Resumo:
In this paper a semi analytic model for rotor - stator broadband noise is presented. The work can be split into two sections. The first examines the distortion of the rotor wake in mean swirling flow, downstream of the fan. Previous work by Cooper and Peake4 is extended to include dissipative effects. In the second section we consider the interaction of this gust with the downstream stator row. We examine the way in which an unsteady pressure field is generated by the interaction of this wake flow with the stator blades and obtain estimates for the radiated noise. A new method is presented to extend the well known LINSUB code to the third dimension to capture the effect of the spanwise wavenumber and stator lean and sweep. Copyright © 2008 by Adrian Lloyd and Nigel Peake.