48 resultados para REPRODUCING KERNEL HILBERT SPACES
em Cambridge University Engineering Department Publications Database
Resumo:
Convergence analysis of consensus algorithms is revisited in the light of the Hilbert distance. The Lyapunov function used in the early analysis by Tsitsiklis is shown to be the Hilbert distance to consensus in log coordinates. Birkhoff theorem, which proves contraction of the Hilbert metric for any positive homogeneous monotone map, provides an early yet general convergence result for consensus algorithms. Because Birkhoff theorem holds in arbitrary cones, we extend consensus algorithms to the cone of positive definite matrices. The proposed generalization finds applications in the convergence analysis of quantum stochastic maps, which are a generalization of stochastic maps to non-commutative probability spaces. ©2010 IEEE.
Resumo:
The Value Handbook is a practical guide, showing how public sector organisations can get the most from ther buildings and spaces in their area. It brings together essential evidence about the benefits of good design, and demonstrates how understanding the different types of value created by the built environment (exchange value, use value, image value,social value, environmental value, and cultural value)is the key to realising its full potential.