6 resultados para RENEWABLE ENERGY SOURCES

em Cambridge University Engineering Department Publications Database


Relevância:

100.00% 100.00%

Publicador:

Resumo:

As a potential poverty reduction and climate change strategy, this paper considers the advantages and disadvantages of using renewable energy technologies for rural electrification in developing countries. Although each case must be considered independently, given a reliable fuel source, renewable energy mini-grids powered by biomass gasifiers or micro-hydro plants appear to be the favoured option due to their lower levelised costs, provision of AC power, potential to provide a 24. h service and ability to host larger capacity systems that can power a wide range of electricity uses. Sustainability indicators are applied to three case studies in order to explore the extent to which sustainable welfare benefits can be created by renewable energy mini-grids. Policy work should focus on raising awareness about renewable energy mini-grids, improving institutional, technical and regulatory frameworks and developing innovative financing mechanisms to encourage private sector investments. Establishing joint technology and community engagement training centres should also be encouraged. © 2011 Elsevier Ltd.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Wind power generation as one of the most popular renewable energy applications is absorbing more and more attention all over the world. However, output power fluctuations of wind farm due to random variations of wind speed can cause network frequency and voltage flicker in power systems. The power quality consequently declines, particularly in an isolated power system such as the power system in a remote community or a small island. This paper proposes an application of superconducting magnetic energy storage (SMES) to minimize output fluctuations of an isolated power system with wind farm. The isolated power system is fed by a diesel generator and a wind generator consisting of a wind turbine and squirrel cage induction machine. The control strategy is detailed and the proposed system is evaluated by simulation in Matlab/Simulink.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

The increasing use of renewable energy technologies for electricity generation, many of which have an unpredictably intermittent nature, will inevitably lead to a greater need for electricity storage. Although there are many existing and emerging storage technologies, most have limitations in terms of geographical constraints, high capital cost or low cycle life, and few are of sufficient scale (in terms of both power and storage capacity) for integration at the transmission and distribution levels. This paper is concerned with a relatively new concept which will be referred to here as Pumped Thermal Electricity Storage (PTES), and which may be able to make a significant contribution towards future storage needs. During charge, PTES makes use of a high temperature-ratio heat pump to convert electrical energy into thermal energy which is stored as ‘sensible heat’ in two thermal reservoirs, one hot and one cold. When required, the thermal energy is then converted back to electricity by effectively running the heat pump backwards as a heat engine. The paper focuses on thermodynamic aspects of PTES, including energy and power density, and the various sources of irreversibility and their impact on round-trip efficiency.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

We present a map of the transformation of energy in China as a Sankey diagram. After a review of previous work, and a statement of methodology, our main work has been the identification, evaluation, and treatment of appropriate data sources. This data is used to construct the Sankey diagram, in which flows of energy are traced from energy sources through end-use conversion devices, passive systems and final services to demand drivers. The resulting diagram provides a convenient and clear snapshot of existing energy transformations in China which can usefully be compared with a similar global analysis and which emphasises the potential for improvements in energy efficiency in 'passive systems'. More broadly, it gives a basis for examining and communicating future energy scenarios, including changes to demand, changes to the supply mix, changes in efficiency and alternative provision of existing services. © 2012 Elsevier Ltd.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

The design of wind turbine blades is a true multi-objective engineering task. The aerodynamic effectiveness of the turbine needs to be balanced with the system loads introduced by the rotor. Moreover the problem is not dependent on a single geometric property, but besides other parameters on a combination of aerofoil family and various blade functions. The aim of this paper is therefore to present a tool which can help designers to get a deeper insight into the complexity of the design space and to find a blade design which is likely to have a low cost of energy. For the research we use a Computational Blade Optimisation and Load Deflation Tool (CoBOLDT) to investigate the three extreme point designs obtained from a multi-objective optimisation of turbine thrust, annual energy production as well as mass for a horizontal axis wind turbine blade. The optimisation algorithm utilised is based on Multi-Objective Tabu Search which constitutes the core of CoBOLDT. The methodology is capable to parametrise the spanning aerofoils with two-dimensional Free Form Deformation and blade functions with two tangentially connected cubic splines. After geometry generation we use a panel code to create aerofoil polars and a stationary Blade Element Momentum code to evaluate turbine performance. Finally, the obtained loads are fed into a structural layout module to estimate the mass and stiffness of the current blade by means of a fully stressed design. For the presented test case we chose post optimisation analysis with parallel coordinates to reveal geometrical features of the extreme point designs and to select a compromise design from the Pareto set. The research revealed that a blade with a feasible laminate layout can be obtained, that can increase the energy capture and lower steady state systems loads. The reduced aerofoil camber and an increased L/. D-ratio could be identified as the main drivers. This statement could not be made with other tools of the research community before. © 2013 Elsevier Ltd.