3 resultados para RECURRENT MALIGNANT GLIOMA
em Cambridge University Engineering Department Publications Database
Resumo:
In this paper we present an unsupervised neural network which exhibits competition between units via inhibitory feedback. The operation is such as to minimize reconstruction error, both for individual patterns, and over the entire training set. A key difference from networks which perform principal components analysis, or one of its variants, is the ability to converge to non-orthogonal weight values. We discuss the network's operation in relation to the twin goals of maximizing information transfer and minimizing code entropy, and show how the assignment of prior probabilities to network outputs can help to reduce entropy. We present results from two binary coding problems, and from experiments with image coding.
Resumo:
This paper presents a new architecture which integrates recurrent input transformations (RIT) and continuous density HMMs. The basic HMM structure is extended to accommodate recurrent neural networks which transform the input observations before they enter the Gaussian output distributions associated with the states of the HMM. During training the parameters of both HMM and RIT are simultaneously optimized according to the Maximum Mutual Information (MMI) criterion. Results are presented for the E-set recognition task which demonstrate the ability of recurrent input transformations to exploit longer term correlations in the speech signal and to give improved discrimination.