11 resultados para RANDOM-PHASE-APPROXIMATION
em Cambridge University Engineering Department Publications Database
Resumo:
We present a combined analytical and numerical study of the early stages (sub-100-fs) of the nonequilibrium dynamics of photoexcited electrons in graphene. We employ the semiclassical Boltzmann equation with a collision integral that includes contributions from electron-electron (e-e) and electron-optical phonon interactions. Taking advantage of circular symmetry and employing the massless Dirac fermion (MDF) Hamiltonian, we are able to perform an essentially analytical study of the e-e contribution to the collision integral. This allows us to take particular care of subtle collinear scattering processes - processes in which incoming and outgoing momenta of the scattering particles lie on the same line - including carrier multiplication (CM) and Auger recombination (AR). These processes have a vanishing phase space for two-dimensional MDF bare bands. However, we argue that electron-lifetime effects, seen in experiments based on angle-resolved photoemission spectroscopy, provide a natural pathway to regularize this pathology, yielding a finite contribution due to CM and AR to the Coulomb collision integral. Finally, we discuss in detail the role of physics beyond the Fermi golden rule by including screening in the matrix element of the Coulomb interaction at the level of the random phase approximation (RPA), focusing in particular on the consequences of various approximations including static RPA screening, which maximizes the impact of CM and AR processes, and dynamical RPA screening, which completely suppresses them. © 2013 American Physical Society.
Resumo:
A fundamental problem in the analysis of structured relational data like graphs, networks, databases, and matrices is to extract a summary of the common structure underlying relations between individual entities. Relational data are typically encoded in the form of arrays; invariance to the ordering of rows and columns corresponds to exchangeable arrays. Results in probability theory due to Aldous, Hoover and Kallenberg show that exchangeable arrays can be represented in terms of a random measurable function which constitutes the natural model parameter in a Bayesian model. We obtain a flexible yet simple Bayesian nonparametric model by placing a Gaussian process prior on the parameter function. Efficient inference utilises elliptical slice sampling combined with a random sparse approximation to the Gaussian process. We demonstrate applications of the model to network data and clarify its relation to models in the literature, several of which emerge as special cases.
Resumo:
A new approximate solution for the first passage probability of a stationary Gaussian random process is presented which is based on the estimation of the mean clump size. A simple expression for the mean clump size is derived in terms of the cumulative normal distribution function, which avoids the lengthy numerical integrations which are required by similar existing techniques. The method is applied to a linear oscillator and an ideal bandpass process and good agreement with published results is obtained. By making a slight modification to an existing analysis it is shown that a widely used empirical result for the asymptotic form of the first passage probability can be deduced theoretically.
Resumo:
In this work, we examine the phenomenon of random lasing from the smectic A liquid crystal phase. We summarise our results to date on random lasing from the smectic A phase including the ability to control the output from the sample using applied electric fields. In addition, diffuse random lasing is demonstrated from the electrohydrodynamic instabilities of a smectic A liquid crystal phase that has been doped with a low concentration of ionic impurities. Using a siloxane-based liquid crystal doped with ionic impurities and a laser dye, nonresonant random laser emission is observed from the highly scattering texture of the smectic A phase which is stable in zero-field. With the application of a low frequency alternating current electric field, turbulence is induced due to motion of the ions. This is accompanied by a decrease in the emission linewidth and an increase in the intensity of the laser emission. The benefit in this case is that a field is not required to maintain the texture as the scattering and homeotropic states are both stable in zero field. This offers a lower power consumption alternative to the electric-field induced static scattering sample.
Resumo:
Even though synchronization in autonomous systems has been observed for over three centuries, reports of systematic experimental studies on synchronized oscillators are limited. Here, we report on observations of internal synchronization in coupled silicon micromechanical oscillators associated with a reduction in the relative phase random walk that is modulated by the magnitude of the reactive coupling force between the oscillators. Additionally, for the first time, a significant improvement in the frequency stability of synchronized micromechanical oscillators is reported. The concept presented here is scalable and could be suitably engineered to establish the basis for a new class of highly precise miniaturized clocks and frequency references. © 2013 American Physical Society.
Resumo:
We present Random Partition Kernels, a new class of kernels derived by demonstrating a natural connection between random partitions of objects and kernels between those objects. We show how the construction can be used to create kernels from methods that would not normally be viewed as random partitions, such as Random Forest. To demonstrate the potential of this method, we propose two new kernels, the Random Forest Kernel and the Fast Cluster Kernel, and show that these kernels consistently outperform standard kernels on problems involving real-world datasets. Finally, we show how the form of these kernels lend themselves to a natural approximation that is appropriate for certain big data problems, allowing $O(N)$ inference in methods such as Gaussian Processes, Support Vector Machines and Kernel PCA.