6 resultados para R. Thompson`s group F

em Cambridge University Engineering Department Publications Database


Relevância:

30.00% 30.00%

Publicador:

Resumo:

This paper derives a new algorithm that performs independent component analysis (ICA) by optimizing the contrast function of the RADICAL algorithm. The core idea of the proposed optimization method is to combine the global search of a good initial condition with a gradient-descent algorithm. This new ICA algorithm performs faster than the RADICAL algorithm (based on Jacobi rotations) while still preserving, and even enhancing, the strong robustness properties that result from its contrast. © Springer-Verlag Berlin Heidelberg 2007.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The paper overviews recent and ongoing efforts by the authors to develop a design methodology to stabilize isolated relative equilibria in a kinematic model of identical particles moving in the plane at unit speed. Isolated relative equilibria correspond to either parallel motion of all particles with fixed relative spacing or to circular motion of all particles about the same center with fixed relative headings. © Springer-Verlag Berlin Heidelberg 2006.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In this study, the Serpent Monte Carlo code was used as a tool for preparation of homogenized few-group cross sections for the nodal diffusion analysis of Sodium cooled Fast Reactor (SFR) cores. Few-group constants for two reference SFR cores were generated by Serpent and then employed by nodal diffusion code DYN3D in 2D full core calculations. The DYN3D results were verified against the references full core Serpent Monte Carlo solutions. A good agreement between the reference Monte Carlo and nodal diffusion results was observed demonstrating the feasibility of using Serpent for generation of few-group constants for the deterministic SFR analysis.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This paper deals with the case history of a damaged one-span prestressed concrete bridge on a crucial artery near the city of Cagliari (Sardinia), along the sea-side. After being involved in a disastrous flood, attention has arisen on the worrying safety state of the deck, submitted to an intense daily traffic load. Evident signs of this severe condition were the deterioration of the beams concrete and the corrosion, the lack of tension and even the rupture of the prestressing cables. After performing a limited in situ test campaign, consisting of sclerometer, pull out and carbonation depth tests, a first evaluation of the safety of the structure was performed. After collecting the data of dynamic and static load tests as well, a comprehensive analysis have been carried out, also by means of a properly calibrated F.E. model. Finally the retrofitting design is presented, consisting of the reparation and thickening of the concrete cover, providing flexural and shear FRP external reinforcements and an external prestressing system, capable of restoring a satisfactory bearing capacity, according to the current national codes. The intervention has been calibrated by the former F.E. model with respect to transversal effects and influence of local and overall deformation of reinforced elements. © 2012 Taylor & Francis Group.