2 resultados para Quaternion ordem

em Cambridge University Engineering Department Publications Database


Relevância:

10.00% 10.00%

Publicador:

Resumo:

The commercial far-range (>10 m) spatial data collection methods for acquiring infrastructure’s geometric data are not completely automated because of the necessary manual pre- and/or post-processing work. The required amount of human intervention and, in some cases, the high equipment costs associated with these methods impede their adoption by the majority of infrastructure mapping activities. This paper presents an automated stereo vision-based method, as an alternative and inexpensive solution, to producing a sparse Euclidean 3D point cloud of an infrastructure scene utilizing two video streams captured by a set of two calibrated cameras. In this process SURF features are automatically detected and matched between each pair of stereo video frames. 3D coordinates of the matched feature points are then calculated via triangulation. The detected SURF features in two successive video frames are automatically matched and the RANSAC algorithm is used to discard mismatches. The quaternion motion estimation method is then used along with bundle adjustment optimization to register successive point clouds. The method was tested on a database of infrastructure stereo video streams. The validity and statistical significance of the results were evaluated by comparing the spatial distance of randomly selected feature points with their corresponding tape measurements.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The present paper considers the problem of autonomous synchronization of attitudes in a swarm of spacecraft. Building upon our recent results on consensus on manifolds, we model the spacecraft as particles on SO(3) and drive these particles to a common point in SO(3). Unlike the Euler angle or quaternion descriptions, this model suffers no singularities nor double-points. Our approach is fully cooperative and autonomous: we use no leader nor external reference. We present two types of control laws, in terms of applied control torques, that globally drive the swarm towards attitude synchronization: one that requires tree-like or all-to-all inter-satellite communication (most efficient) and one that works with nearly arbitrary communication (most robust).