81 resultados para Quasi-Uniform Space
em Cambridge University Engineering Department Publications Database
Resumo:
New space-time trellis codes with four- and eight-level phase-shift keying (PSK) and 16-phase quadrature amplitude modulation (QAM) for two transmit antennas in slow-fading channels are presented in this paper. Unlike most of the codes that are reported in the literature, the proposed codes are specifically designed to minimize the frame error probability from a union-bound perspective. The performance of the proposed codes with various memory orders and receive antennas is evaluated by simulation. It is shown that the proposed codes outperform previously known codes in all studied cases.
Resumo:
Sequential Monte Carlo methods, also known as particle methods, are a widely used set of computational tools for inference in non-linear non-Gaussian state-space models. In many applications it may be necessary to compute the sensitivity, or derivative, of the optimal filter with respect to the static parameters of the state-space model; for instance, in order to obtain maximum likelihood model parameters of interest, or to compute the optimal controller in an optimal control problem. In Poyiadjis et al. [2011] an original particle algorithm to compute the filter derivative was proposed and it was shown using numerical examples that the particle estimate was numerically stable in the sense that it did not deteriorate over time. In this paper we substantiate this claim with a detailed theoretical study. Lp bounds and a central limit theorem for this particle approximation of the filter derivative are presented. It is further shown that under mixing conditions these Lp bounds and the asymptotic variance characterized by the central limit theorem are uniformly bounded with respect to the time index. We demon- strate the performance predicted by theory with several numerical examples. We also use the particle approximation of the filter derivative to perform online maximum likelihood parameter estimation for a stochastic volatility model.
Resumo:
The effects of initial soil fabric and mode of shearing on quasi-steady state line in void ratiostress space are studied by employing the Distinct Element Method numerical analysis. The results show that the initial soil fabric and the mode of shearing have a profound effect on the location of the quasi-steady state line. The evolution of the soil fabric during the course of undrained shearing shows that the specimens with different initial soil fabrics reach quasi-steady state at various soil fabric conditions. At quasi-steady state, the soil fabric has a significant adjustment to change its behavior from contractive to dilative. As the stress state approaches the steady state, the soil fabrics of different initial conditions become similar. The numerical analysis results are compared qualitatively with the published experimental data and the effects of specimen reconstitution methods and mode of shearing found in the experimental studies canbe systematically explained by the numerical analysis. © 2009 Taylor & Francis Group.
Resumo:
The numerical solution of problems in unbounded physical space requires a truncation of the computational domain to a reasonable size. As a result, the conditions on the artificial boundaries are generally unknown. Assumptions like constant pressure or velocities are only valid in the far field and lead to spurious reflections if applied on the boundaries of the truncated domain. A number of attempts have been made over the past decades to design conditions that prevent such reflections. One approach is based on characteristics. The standard analysis assumes a spatially uniform mean flow field but this is often impractical. In the present paper we show how to extend the formulation to the more general case of a non-uniform mean velocity field. A number of test cases are provided and our results compare favourably with other boundary conditions. In principle the present approach can be extended to include non-uniformities in all variables.
Resumo:
Space time cube representation is an information visualization technique where spatiotemporal data points are mapped into a cube. Information visualization researchers have previously argued that space time cube representation is beneficial in revealing complex spatiotemporal patterns in a data set to users. The argument is based on the fact that both time and spatial information are displayed simultaneously to users, an effect difficult to achieve in other representations. However, to our knowledge the actual usefulness of space time cube representation in conveying complex spatiotemporal patterns to users has not been empirically validated. To fill this gap, we report on a between-subjects experiment comparing novice users' error rates and response times when answering a set of questions using either space time cube or a baseline 2D representation. For some simple questions, the error rates were lower when using the baseline representation. For complex questions where the participants needed an overall understanding of the spatiotemporal structure of the data set, the space time cube representation resulted in on average twice as fast response times with no difference in error rates compared to the baseline. These results provide an empirical foundation for the hypothesis that space time cube representation benefits users analyzing complex spatiotemporal patterns.
Resumo:
Space time cube representation is an information visualization technique where spatiotemporal data points are mapped into a cube. Fast and correct analysis of such information is important in for instance geospatial and social visualization applications. Information visualization researchers have previously argued that space time cube representation is beneficial in revealing complex spatiotemporal patterns in a dataset to users. The argument is based on the fact that both time and spatial information are displayed simultaneously to users, an effect difficult to achieve in other representations. However, to our knowledge the actual usefulness of space time cube representation in conveying complex spatiotemporal patterns to users has not been empirically validated. To fill this gap we report on a between-subjects experiment comparing novice users error rates and response times when answering a set of questions using either space time cube or a baseline 2D representation. For some simple questions the error rates were lower when using the baseline representation. For complex questions where the participants needed an overall understanding of the spatiotemporal structure of the dataset, the space time cube representation resulted in on average twice as fast response times with no difference in error rates compared to the baseline. These results provide an empirical foundation for the hypothesis that space time cube representation benefits users when analyzing complex spatiotemporal patterns.