16 resultados para Quartets (Flute, violin, viola, cello)
em Cambridge University Engineering Department Publications Database
Resumo:
This study is the first step in the psychoacoustic exploration of perceptual differences between the sounds of different violins. A method was used which enabled the same performance to be replayed on different "virtual violins," so that the relationships between acoustical characteristics of violins and perceived qualities could be explored. Recordings of real performances were made using a bridge-mounted force transducer, giving an accurate representation of the signal from the violin string. These were then played through filters corresponding to the admittance curves of different violins. Initially, limits of listener performance in detecting changes in acoustical characteristics were characterized. These consisted of shifts in frequency or increases in amplitude of single modes or frequency bands that have been proposed previously to be significant in the perception of violin sound quality. Thresholds were significantly lower for musically trained than for nontrained subjects but were not significantly affected by the violin used as a baseline. Thresholds for the musicians typically ranged from 3 to 6 dB for amplitude changes and 1.5%-20% for frequency changes. interpretation of the results using excitation patterns showed that thresholds for the best subjects were quite well predicted by a multichannel model based on optimal processing. (c) 2007 Acoustical Society of America.
Resumo:
The behaviour of a bowed string depends, among other things, on the frequency, impedance and internal damping of torsional waves on the string. Very little published information is available about these quantities, especially the torsional damping. Measurements of all relevant torsional properties have been made on cello strings of three different constructions. These show that the torsional modes are harmonically spaced to reasonable accuracy, and that the Q factors are approximately equal for all modes of a given string. These torsional Q factors are roughly an order of magnitude smaller than those of the transverse modes of the same string. The torsional wave speed varies somewhat with the tension in the string, decreasing with higher tension. The damping factors are not significantly influenced by tension. These results have been expressed in terms of a novel "reflection function" [1] suitable for direct incorporation into simulations of the bowing process.
Resumo:
We present a model for early vision tasks such as denoising, super-resolution, deblurring, and demosaicing. The model provides a resolution-independent representation of discrete images which admits a truly rotationally invariant prior. The model generalizes several existing approaches: variational methods, finite element methods, and discrete random fields. The primary contribution is a novel energy functional which has not previously been written down, which combines the discrete measurements from pixels with a continuous-domain world viewed through continous-domain point-spread functions. The value of the functional is that simple priors (such as total variation and generalizations) on the continous-domain world become realistic priors on the sampled images. We show that despite its apparent complexity, optimization of this model depends on just a few computational primitives, which although tedious to derive, can now be reused in many domains. We define a set of optimization algorithms which greatly overcome the apparent complexity of this model, and make possible its practical application. New experimental results include infinite-resolution upsampling, and a method for obtaining subpixel superpixels. © 2012 IEEE.