12 resultados para Quality of Data
em Cambridge University Engineering Department Publications Database
Resumo:
Data quality (DQ) assessment can be significantly enhanced with the use of the right DQ assessment methods, which provide automated solutions to assess DQ. The range of DQ assessment methods is very broad: from data profiling and semantic profiling to data matching and data validation. This paper gives an overview of current methods for DQ assessment and classifies the DQ assessment methods into an existing taxonomy of DQ problems. Specific examples of the placement of each DQ method in the taxonomy are provided and illustrate why the method is relevant to the particular taxonomy position. The gaps in the taxonomy, where no current DQ methods exist, show where new methods are required and can guide future research and DQ tool development.
Resumo:
The Dependency Structure Matrix (DSM) has proved to be a useful tool for system structure elicitation and analysis. However, as with any modelling approach, the insights gained from analysis are limited by the quality and correctness of input information. This paper explores how the quality of data in a DSM can be enhanced by elicitation methods which include comparison of information acquired from different perspectives and levels of abstraction. The approach is based on comparison of dependencies according to their structural importance. It is illustrated through two case studies: creation of a DSM showing the spatial connections between elements in a product, and a DSM capturing information flows in an organisation. We conclude that considering structural criteria can lead to improved data quality in DSM models, although further research is required to fully explore the benefits and limitations of our proposed approach.
Resumo:
With the rapid growth of information and communication technology (ICT) in Korea, there was a need to improve the quality of official ICT statistics. In order to do this, various factors had to be considered, such as the quality of surveying, processing, and output as well as the reputation of the statistical agency. We used PLS estimation to determine how these factors might influence customer satisfaction. Furthermore, through a comparison of associated satisfaction indices, we provided feedback to the responsible statistics agency. It appears that our model can be used as a tool for improving the quality of official ICT statistics. © 2008 Elsevier B.V. All rights reserved.