202 resultados para QUANTUM MICROCAVITY

em Cambridge University Engineering Department Publications Database


Relevância:

30.00% 30.00%

Publicador:

Resumo:

Graphene has extraordinary electronic and optical properties and holds great promise for applications in photonics and optoelectronics. Demonstrations including high-speed photodetectors, optical modulators, plasmonic devices, and ultrafast lasers have now been reported. More advanced device concepts would involve photonic elements such as cavities to control light-matter interaction in graphene. Here we report the first monolithic integration of a graphene transistor and a planar, optical microcavity. We find that the microcavity-induced optical confinement controls the efficiency and spectral selection of photocurrent generation in the integrated graphene device. A twenty-fold enhancement of photocurrent is demonstrated. The optical cavity also determines the spectral properties of the electrically excited thermal radiation of graphene. Most interestingly, we find that the cavity confinement modifies the electrical transport characteristics of the integrated graphene transistor. Our experimental approach opens up a route towards cavity-quantum electrodynamics on the nanometre scale with graphene as a current-carrying intra-cavity medium of atomic thickness. © 2012 Macmillan Publishers Limited. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Relevância:

20.00% 20.00%

Publicador:

Resumo:

All computers process information electronically. A processing method based on magnetism is reported here, in which networks of interacting submicrometer magnetic dots are used to perform logic operations and propagate information at room temperature. The logic states are signaled by the magnetization direction of the single-domain magnetic dots; the dots couple to their nearest neighbors through magnetostatic interactions. Magnetic solitons carry information through the networks, and an applied oscillating magnetic field feeds energy into the system and serves as a clock. These networks offer a several thousandfold increase in integration density and a hundredfold reduction in power dissipation over current microelectronic technology.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Colliding pulse modelocking is demonstrated for the first time in quantum dot lasers. Using 3.9 mm-long devices with a 245 pm-long central absorber, 7 ps pulses at a repetition rate of 20 GHz is obtained. For Gaussian pulses a time-bandwidth product close to the Fourier transform limit is determined. These results confirm the potential of quantum dot lasers for high repetition rate harmonic modelocking.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this paper we report the design of high room temperature photoluminescence internal efficiency InGaN-based quantum well structures emitting in the near ultraviolet at 380 nm. To counter the effects of nonradiative recombination the quantum wells were designed to have a large indium fraction, high barriers, and a small quantum well thickness. To minimize the interwell and interbarrier thickness fluctuations we used Al0.2In0.005Ga0.795N barriers, where the inclusion of the small fraction of indium was found to lead to fewer structural defects and a reduction in the layer thickness fluctuations. This approach has led us to achieve, for an In0.08Ga0.92N/Al0.2In0.005Ga0.795N multiple quantum well structure with a well width of 1.5 nm, a photoluminescence internal efficiency of 67% for peak emission at 382 nm at room temperature. (c) 2007 American Institute of Physics.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We have studied the optical properties of a series of InGaN/AlInGaN 10-period multiple quantum wells (MQW) with differing well thickness grown by metal-organic vapor-phase epitaxy that emit at around 380 nm. The aim of this investigation was to optimise the room temperature internal quantum efficiency, thus the quantum well (QW) thicknesses were accordingly chosen so that the overlap of the electron/hole wave function was maximised. At low temperature, we observed a reduction of the photo luminescence decay time with decreasing well width in line with the theoretical predictions. For a structure with well thicknesses of 1.5 nm, we measured a photoluminescence internal quantum efficiency of 67% at room temperature with a peak emission wavelength of 382 nm. (c) 2006 Elsevier B.V. All rights reserved.