2 resultados para Putamen

em Cambridge University Engineering Department Publications Database


Relevância:

10.00% 10.00%

Publicador:

Resumo:

The possibility that we will have to invest effort influences our future choice behavior. Indeed deciding whether an action is actually worth taking is a key element in the expression of human apathy or inertia. There is a well developed literature on brain activity related to the anticipation of effort, but how effort affects actual choice is less well understood. Furthermore, prior work is largely restricted to mental as opposed to physical effort or has confounded temporal with effortful costs. Here we investigated choice behavior and brain activity, using functional magnetic resonance imaging, in a study where healthy participants are required to make decisions between effortful gripping, where the factors of force (high and low) and reward (high and low) were varied, and a choice of merely holding a grip device for minimal monetary reward. Behaviorally, we show that force level influences the likelihood of choosing an effortful grip. We observed greater activity in the putamen when participants opt to grip an option with low effort compared with when they opt to grip an option with high effort. The results suggest that, over and above a nonspecific role in movement anticipation and salience, the putamen plays a crucial role in computations for choice that involves effort costs.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Food preferences are acquired through experience and can exert strong influence on choice behavior. In order to choose which food to consume, it is necessary to maintain a predictive representation of the subjective value of the associated food stimulus. Here, we explore the neural mechanisms by which such predictive representations are learned through classical conditioning. Human subjects were scanned using fMRI while learning associations between arbitrary visual stimuli and subsequent delivery of one of five different food flavors. Using a temporal difference algorithm to model learning, we found predictive responses in the ventral midbrain and a part of ventral striatum (ventral putamen) that were related directly to subjects' actual behavioral preferences. These brain structures demonstrated divergent response profiles, with the ventral midbrain showing a linear response profile with preference, and the ventral striatum a bivalent response. These results provide insight into the neural mechanisms underlying human preference behavior.