154 resultados para Pulsed Photoacoustic Technique
em Cambridge University Engineering Department Publications Database
Resumo:
We report on electrical transport measurements at high current densities on optimally doped YBa 2Cu 3O 7-δ thin films grown on vicinal SrTiO 3 substrates. Data were collected by using a pulsed-current technique in a four-probe arrangement, allowing to extend the current-voltage characteristics to high supercritical current densities (up to 24 MA cm -2) and high electric fields (more than 20 V/cm), in the superconducting state at temperatures between 30 and 80 K. The electric measurements were performed on tracks perpendicular to the vicinal step direction, such that the current crossed between ab planes, under magnetic field rotated in the plane defined by the crystallographic c axis and the current density. At magnetic field orientation parallel to the cuprate layers, evidence for the sliding motion along the ab planes (vortex channeling) was found. The signature of vortex channeling appeared to get enhanced with increasing electric field, due to the peculiar depinning features in the kinked vortex range. They give rise to a current-voltage characteristics steeper than in the more off-plane rectilinear vortex orientations, in the electric field range below approximately 1 V/cm. Roughly above this value, the high vortex channeling velocities (up to 8.6 km/s) could be ascribed to the flux flow, although the signature of ohmic transport appeared to be altered by unavoidable macroscopic self-heating and hot-electron-like effects. © 2012 Elsevier B.V. All rights reserved.
Resumo:
The magnetisation of bulk high temperature superconductors (HTS), such as RE-Ba-Cu-O [(RE)BCO, where RE is a rare earth element or Y], by a practical technique is essential for their application in high field, permanent magnet-like devices. Research to-date into the pulsed field magnetisation (PFM) of these materials, however, has been limited generally to experimental techniques, with relatively little progress in the development of theoretical models. This is because not only is a multi-physics approach needed to take account of the heating of the samples but also the high electric fields generated are well above the regime in which there are reliable experimental results. This paper describes a framework of theoretical simulation using the finite element method (FEM) that is applicable to both single- and multi-pulse magnetisation processes of (RE)BCO bulk superconductors. The model incorporates the heat equation and provides a convenient way of determining the distribution of trapped field, current density and temperature change within a bulk superconductor at each stage of the magnetisation process. An example of the single-pulse magnetisation of a (RE)BCO bulk is described. Potentially, the model may serve as a cost-effective tool for the optimisation of the bulk geometry and the magnetisation profile in multi-pulse magnetisation processes. © 2010 IOP Publishing Ltd.
Resumo:
The ability to generate a permanent, stable magnetic field unsupported by an electromotive force is fundamental to a variety of engineering applications. Bulk high temperature superconducting (HTS) materials can trap magnetic fields of magnitude over ten times higher than the maximum field produced by conventional magnets, which is limited practically to rather less than 2 T. In this paper, two large c-axis oriented, single-grain YBCO and GdBCO bulk superconductors are magnetized by the pulsed field magnetization (PFM) technique at temperatures of 40 and 65 K and the characteristics of the resulting trapped field profile are investigated with a view of magnetizing such samples as trapped field magnets (TFMs) in situ inside a trapped flux-type superconducting electric machine. A comparison is made between the temperatures at which the pulsed magnetic field is applied and the results have strong implications for the optimum operating temperature for TFMs in trapped flux-type superconducting electric machines. The effects of inhomogeneities, which occur during the growth process of single-grain bulk superconductors, on the trapped field and maximum temperature rise in the sample are modelled numerically using a 3D finite-element model based on the H-formulation and implemented in Comsol Multiphysics 4.3a. The results agree qualitatively with the observed experimental results, in that inhomogeneities act to distort the trapped field profile and reduce the magnitude of the trapped field due to localized heating within the sample and preferential movement and pinning of flux lines around the growth section regions (GSRs) and growth sector boundaries (GSBs), respectively. The modelling framework will allow further investigation of various inhomogeneities that arise during the processing of (RE)BCO bulk superconductors, including inhomogeneous Jc distributions and the presence of current-limiting grain boundaries and cracks, and it can be used to assist optimization of processing and PFM techniques for practical bulk superconductor applications. © 2014 IOP Publishing Ltd.
Resumo:
This work describes the deposition, annealing and characterisation of semi-insulating oxygen-doped silicon films at temperatures compatible with polysilicon circuitry on glass. The semi-insulating layers are deposited by the plasma enhanced chemical vapour deposition technique from silane (SiH4), nitrous oxide (N2O) and helium (He) gas mixtures at a temperature of 350 °C. The as-deposited films are then furnace annealed at 600 °C which is the maximum process temperature. Raman analysis shows the as-deposited and annealed films to be completely amorphous. The most important deposition variable is the N2O SiH4 gas ratio. By varying the N2O SiH4 ratio the conductivity of the annealed films can be accurately controlled, for the first time, down to a minimum of ≈10-7Ω-1cm-1 where they exhibit a T -1 4 temperature dependence indicative of a hopping conduction mechanism. Helium dilution of the reactant gases is shown to improve both film uniformity and reproducibility. A model for the microstructure of these semi-insulating amorphous oxygen-doped silicon films is proposed to explain the observed physical and electrical properties. © 1995.
Resumo:
This work describes the annealing and characterisation of semi-insulating oxygen-doped silicon films deposited by the Plasma Enhanced Chemical Vapour Deposition (PECVD) technique from silane (SiH4), nitrous oxide (N2O) and helium (He) gas mixtures. The maximum process temperature is chosen to be compatible with large area polycrystalline silicon (poly-Si) circuitry on glass. The most important deposition variable is shown to be the N2O SiH4 gas ratio. Helium dilution results in improved film uniformity and reproducibility. Raman analysis shows the 'as-deposited' and annealed films to be completely amorphous. A model for the microstructure of these Semi-Insulating Amorphous Oxygen-doped Silicon (SIAOS) films is proposed to explain the observed physical and electrical properties. © 1995.
Resumo:
Receptor-based detection of pathogens often suffers from non-specific interactions, and as most detection techniques cannot distinguish between affinities of interactions, false positive responses remain a plaguing reality. Here, we report an anharmonic acoustic based method of detection that addresses the inherent weakness of current ligand dependant assays. Spores of Bacillus subtilis (Bacillus anthracis simulant) were immobilized on a thickness-shear mode AT-cut quartz crystal functionalized with anti-spore antibody and the sensor was driven by a pure sinusoidal oscillation at increasing amplitude. Biomolecular interaction forces between the coupled spores and the accelerating surface caused a nonlinear modulation of the acoustic response of the crystal. In particular, the deviation in the third harmonic of the transduced electrical response versus oscillation amplitude of the sensor (signal) was found to be significant. Signals from the specifically-bound spores were clearly distinguishable in shape from those of the physisorbed streptavidin-coated polystyrene microbeads. The analytical model presented here enables estimation of the biomolecular interaction forces from the measured response. Thus, probing biomolecular interaction forces using the described technique can quantitatively detect pathogens and distinguish specific from non-specific interactions, with potential applicability to rapid point-of-care detection. This also serves as a potential tool for rapid force-spectroscopy, affinity-based biomolecular screening and mapping of molecular interaction networks.