9 resultados para Protein Structure, Multifractal Analysis, 6 Letter Model

em Cambridge University Engineering Department Publications Database


Relevância:

100.00% 100.00%

Publicador:

Resumo:

This paper presents an analytical modeling technique for the simulation of long-range ultrasonic guided waves in structures. The model may be used to predict the displacement field in a prismatic structure arising from any excitation arrangement and may therefore be used as a tool to design new inspection systems. It is computationally efficient and relatively simple to implement, yet gives accuracy similar to finite element analysis and semi-analytical finite element analysis methods. The model has many potential applications; one example is the optimization of part-circumferential arrays where access to the full circumference of the pipe is restricted. The model has been successfully validated by comparison with finite element solutions. Experimental validation has also been carried out using an array of piezoelectric transducer elements to measure the displacement field arising from a single transducer element in an 88.9-mm-diameter pipe. Good agreement has been obtained between the two models and the experimental data.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We study the spectral characteristics of bovine serum albumin (BSA) protein conjugated single-wall carbon nanotubes (SWNTs), and quantify their uptake by macrophages. The binding of BSA onto the SWNT surface is found to change the protein structure and to increase the doping of the nanotubes. The G-band Raman intensity follows a well-defined power law for SWNT concentrations of up to 33 μg ml-1 in aqueous solutions. Subsequently, in vitro experiments demonstrate that incubation of BSA-SWNT complexes with macrophages affects neither the cellular growth nor the cellular viability over multiple cell generations. Using wide spot Raman spectroscopy as a fast, non-destructive method for statistical quantification, we observe that macrophages effectively uptake BSA-SWNT complexes, with the average number of nanotubes internalized per cell remaining relatively constant over consecutive cell generations. The number of internalized SWNTs is found to be ∼30 × 106 SWNTs/cell for a 60 mm-2 seeding density and ∼100 × 10 6 SWNTs/cell for a 200 mm-2 seeding density. Our results show that BSA-functionalized SWNTs are an efficient molecular transport system with low cytotoxicity maintained over multiple cell generations. © 2013 IOP Publishing Ltd.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This study examines the kinetics of carbonation by CO2 at temperatures of ca. 750 °C of a synthetic sorbent composed of 15 wt% mayenite (Ca12Al14O33) and CaO, designated HA-85-850, and draws comparisons with the carbonation of a calcined limestone. In-situ XRD has verified the inertness of mayenite, which neither interacts with the active CaO nor does it significantly alter the CaO carbonation–calcination equilibrium. An overlapping grain model was developed to predict the rate and extent of carbonation of HA-85-850 and limestone. In the model, the initial microstructure of the sorbent was defined by a discretised grain size distribution, assuming spherical grains. The initial input to the model – the size distribution of grains – was a fitted parameter, which was in good agreement with measurements made with mercury porosimetry and by the analysis of SEM images of sectioned particles. It was found that the randomly overlapping spherical grain assumption offered great simplicity to the model, despite its approximation to the actual porous structure within a particle. The model was able to predict the performance of the materials well and, particularly, was able to account for changes in rate and extent of reaction as the structure evolved after various numbers of cycles of calcination and carbonation.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This study examines the kinetics of carbonation by CO 2 at temperatures of ca. 750°C of a synthetic sorbent composed of 15wt% mayenite (Ca 12Al 14O 33) and CaO, designated HA-85-850, and draws comparisons with the carbonation of a calcined limestone. In-situ XRD has verified the inertness of mayenite, which neither interacts with the active CaO nor does it significantly alter the CaO carbonation-calcination equilibrium. An overlapping grain model was developed to predict the rate and extent of carbonation of HA-85-850 and limestone. In the model, the initial microstructure of the sorbent was defined by a discretised grain size distribution, assuming spherical grains. The initial input to the model - the size distribution of grains - was a fitted parameter, which was in good agreement with measurements made with mercury porosimetry and by the analysis of SEM images of sectioned particles. It was found that the randomly overlapping spherical grain assumption offered great simplicity to the model, despite its approximation to the actual porous structure within a particle. The model was able to predict the performance of the materials well and, particularly, was able to account for changes in rate and extent of reaction as the structure evolved after various numbers of cycles of calcination and carbonation. © 2011 Elsevier Ltd.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

BACKGROUND: Neuronal migration, the process by which neurons migrate from their place of origin to their final position in the brain, is a central process for normal brain development and function. Advances in experimental techniques have revealed much about many of the molecular components involved in this process. Notwithstanding these advances, how the molecular machinery works together to govern the migration process has yet to be fully understood. Here we present a computational model of neuronal migration, in which four key molecular entities, Lis1, DCX, Reelin and GABA, form a molecular program that mediates the migration process. RESULTS: The model simulated the dynamic migration process, consistent with in-vivo observations of morphological, cellular and population-level phenomena. Specifically, the model reproduced migration phases, cellular dynamics and population distributions that concur with experimental observations in normal neuronal development. We tested the model under reduced activity of Lis1 and DCX and found an aberrant development similar to observations in Lis1 and DCX silencing expression experiments. Analysis of the model gave rise to unforeseen insights that could guide future experimental study. Specifically: (1) the model revealed the possibility that under conditions of Lis1 reduced expression, neurons experience an oscillatory neuron-glial association prior to the multipolar stage; and (2) we hypothesized that observed morphology variations in rats and mice may be explained by a single difference in the way that Lis1 and DCX stimulate bipolar motility. From this we make the following predictions: (1) under reduced Lis1 and enhanced DCX expression, we predict a reduced bipolar migration in rats, and (2) under enhanced DCX expression in mice we predict a normal or a higher bipolar migration. CONCLUSIONS: We present here a system-wide computational model of neuronal migration that integrates theory and data within a precise, testable framework. Our model accounts for a range of observable behaviors and affords a computational framework to study aspects of neuronal migration as a complex process that is driven by a relatively simple molecular program. Analysis of the model generated new hypotheses and yet unobserved phenomena that may guide future experimental studies. This paper thus reports a first step toward a comprehensive in-silico model of neuronal migration.