9 resultados para Project Management Office
em Cambridge University Engineering Department Publications Database
Resumo:
This book explores the processes for retrieval, classification, and integration of construction images in AEC/FM model based systems. The author describes a combination of techniques from the areas of image and video processing, computer vision, information retrieval, statistics and content-based image and video retrieval that have been integrated into a novel method for the retrieval of related construction site image data from components of a project model. This method has been tested on available construction site images from a variety of sources like past and current building construction and transportation projects and is able to automatically classify, store, integrate and retrieve image data files in inter-organizational systems so as to allow their usage in project management related tasks. objects. Therefore, automated methods for the integration of construction images are important for construction information management. During this research, processes for retrieval, classification, and integration of construction images in AEC/FM model based systems have been explored. Specifically, a combination of techniques from the areas of image and video processing, computer vision, information retrieval, statistics and content-based image and video retrieval have been deployed in order to develop a methodology for the retrieval of related construction site image data from components of a project model. This method has been tested on available construction site images from a variety of sources like past and current building construction and transportation projects and is able to automatically classify, store, integrate and retrieve image data files in inter-organizational systems so as to allow their usage in project management related tasks.
Resumo:
Tracking methods have the potential to retrieve the spatial location of project related entities such as personnel and equipment at construction sites, which can facilitate several construction management tasks. Existing tracking methods are mainly based on Radio Frequency (RF) technologies and thus require manual deployment of tags. On construction sites with numerous entities, tags installation, maintenance and decommissioning become an issue since it increases the cost and time needed to implement these tracking methods. To address these limitations, this paper proposes an alternate 3D tracking method based on vision. It operates by tracking the designated object in 2D video frames and correlating the tracking results from multiple pre-calibrated views using epipolar geometry. The methodology presented in this paper has been implemented and tested on videos taken in controlled experimental conditions. Results are compared with the actual 3D positions to validate its performance.
Resumo:
The Architecture, Engineering, Construction and Facilities Management (AEC/FM) industry is rapidly becoming a multidisciplinary, multinational and multi-billion dollar economy, involving large numbers of actors working concurrently at different locations and using heterogeneous software and hardware technologies. Since the beginning of the last decade, a great deal of effort has been spent within the field of construction IT in order to integrate data and information from most computer tools used to carry out engineering projects. For this purpose, a number of integration models have been developed, like web-centric systems and construction project modeling, a useful approach in representing construction projects and integrating data from various civil engineering applications. In the modern, distributed and dynamic construction environment it is important to retrieve and exchange information from different sources and in different data formats in order to improve the processes supported by these systems. Previous research demonstrated that a major hurdle in AEC/FM data integration in such systems is caused by its variety of data types and that a significant part of the data is stored in semi-structured or unstructured formats. Therefore, new integrative approaches are needed to handle non-structured data types like images and text files. This research is focused on the integration of construction site images. These images are a significant part of the construction documentation with thousands stored in site photographs logs of large scale projects. However, locating and identifying such data needed for the important decision making processes is a very hard and time-consuming task, while so far, there are no automated methods for associating them with other related objects. Therefore, automated methods for the integration of construction images are important for construction information management. During this research, processes for retrieval, classification, and integration of construction images in AEC/FM model based systems have been explored. Specifically, a combination of techniques from the areas of image and video processing, computer vision, information retrieval, statistics and content-based image and video retrieval have been deployed in order to develop a methodology for the retrieval of related construction site image data from components of a project model. This method has been tested on available construction site images from a variety of sources like past and current building construction and transportation projects and is able to automatically classify, store, integrate and retrieve image data files in inter-organizational systems so as to allow their usage in project management related tasks.
Resumo:
Images represent a valuable source of information for the construction industry. Due to technological advancements in digital imaging, the increasing use of digital cameras is leading to an ever-increasing volume of images being stored in construction image databases and thus makes it hard for engineers to retrieve useful information from them. Content-Based Search Engines are tools that utilize the rich image content and apply pattern recognition methods in order to retrieve similar images. In this paper, we illustrate several project management tasks and show how Content-Based Search Engines can facilitate automatic retrieval, and indexing of construction images in image databases.