13 resultados para Professional Development of Science Teachers

em Cambridge University Engineering Department Publications Database


Relevância:

100.00% 100.00%

Publicador:

Relevância:

100.00% 100.00%

Publicador:

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Innovation is a critical factor in ensuring commercial success within the area of medical technology. Biotechnology and Healthcare developments require huge financial and resource investment, in-depth research and clinical trials. Consequently, these developments involve a complex multidisciplinary structure, which is inherently full of risks and uncertainty. In this context, early technology assessment and 'proof of concept' is often sporadic and unstructured. Existing methodologies for managing the feasibility stage of medical device development are predominantly suited to the later phases of development and favour detail in optimisation, validation and regulatory approval. During these early phases, feasibility studies are normally conducted to establish whether technology is potentially viable. However, it is not clear how this technology viability is currently measured. This paper aims to redress this gap through the development of a technology confidence scale, as appropriate explicitly to the feasibility phase of medical device design. These guidelines were developed from analysis of three recent innovation studies within the medical device industry.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This paper discusses innovations in curriculum development in the Department of Engineering at the University of Cambridge as a participant in the Teaching for Learning Network (TFLN), a teaching and learning development initiative funded by the Cambridge-MIT Institute a pedagogic collaboration and brokerage network. A year-long research and development project investigated the practical experiences through which students traditionally explore engineering disciplines, apply and extend the knowledge gained in lectures and other settings, and begin to develop their professional expertise. The research project evaluated current practice in these sessions and developed an evidence-base to identify requirements for new activities, student support and staff development. The evidence collected included a novel student 'practice-value' survey highlighting effective practice and areas of concern, classroom observation of practicals, semi-structured interviews with staff, a student focus group and informal discussions with staff. Analysis of the data identified three potentially 'high-leverage' strategies for improvement: development of a more integrated teaching framework, within which practical work could be contextualised in relation to other learning; a more transparent and integrated conceptual framework where theory and practice were more closely linked; development of practical work more reflective of the complex problems facing professional engineers. This paper sets out key elements of the evidence collected and the changes that have been informed by this evidence and analysis, leading to the creation of a suite of integrated practical sessions carefully linked to other course elements and reinforcing central concepts in engineering, accompanied by a training and support programme for teaching staff.