6 resultados para Principal components

em Cambridge University Engineering Department Publications Database


Relevância:

100.00% 100.00%

Publicador:

Resumo:

In this paper, we discuss methods to refine locally optimal solutions of sparse PCA. Starting from a local solution obtained by existing algorithms, these methods take advantage of convex relaxations of the sparse PCA problem to propose a refined solution that is still locally optimal but with a higher objective value. © 2010 Springer -Verlag Berlin Heidelberg.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

In this paper we present an unsupervised neural network which exhibits competition between units via inhibitory feedback. The operation is such as to minimize reconstruction error, both for individual patterns, and over the entire training set. A key difference from networks which perform principal components analysis, or one of its variants, is the ability to converge to non-orthogonal weight values. We discuss the network's operation in relation to the twin goals of maximizing information transfer and minimizing code entropy, and show how the assignment of prior probabilities to network outputs can help to reduce entropy. We present results from two binary coding problems, and from experiments with image coding.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

A simple composite design methodology has been developed from the basic principles of composite component failure. This design approach applies the principles of stress field matching to develop suitable reinforcement patterns around three-dimensional details such as lugs in mechanical components. The resulting patterns are essentially curvilinear orthogonal meshes, adjusted to meet the restrictions imposed by geometric restraints and the intended manufacturing process. Whilst the principles behind the design methodology can be applied to components produced by differing manufacturing processes, the results found from looking at simple generic example problems suggest a realistic and practical generic manufacturing approach. The underlying principles of the design methodology are described and simple analyses are used to help illustrate both the methodology and how such components behave. These analyses suggest it is possible to replace high-strength steel lugs with composite components whose strength-to-weight ratio is some 4-5 times better. © 1998 Elsevier Science Ltd. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In this paper we develop a new approach to sparse principal component analysis (sparse PCA). We propose two single-unit and two block optimization formulations of the sparse PCA problem, aimed at extracting a single sparse dominant principal component of a data matrix, or more components at once, respectively. While the initial formulations involve nonconvex functions, and are therefore computationally intractable, we rewrite them into the form of an optimization program involving maximization of a convex function on a compact set. The dimension of the search space is decreased enormously if the data matrix has many more columns (variables) than rows. We then propose and analyze a simple gradient method suited for the task. It appears that our algorithm has best convergence properties in the case when either the objective function or the feasible set are strongly convex, which is the case with our single-unit formulations and can be enforced in the block case. Finally, we demonstrate numerically on a set of random and gene expression test problems that our approach outperforms existing algorithms both in quality of the obtained solution and in computational speed. © 2010 Michel Journée, Yurii Nesterov, Peter Richtárik and Rodolphe Sepulchre.