8 resultados para Previous Expectations
em Cambridge University Engineering Department Publications Database
Resumo:
Engineering companies face many challenges today such as increased competition, higher expectations from consumers and decreasing product lifecycle times. This means that product development times must be reduced to meet these challenges. Concurrent engineering, reuse of engineering knowledge and the use of advanced methods and tools are among the ways of reducing product development times. Concurrent engineering is crucial in making sure that the products are designed with all issues considered simultaneously. The reuse of engineering knowledge allows existing solutions to be reused. It can also help to avoid the mistakes made in previous designs. Computer-based tools are used to store information, automate tasks, distribute work, perform simulation and so forth. This research concerns the evaluation of tools that can be used to support the design process. These tools are evaluated in terms of the capture of information generated during the design process. This information is vital to allow the reuse of knowledge. Present CAD systems store only information on the final definition of the product such as geometry, materials and manufacturing processes. Product Data Management (PDM) systems can manage all this CAD information along with other product related information. The research includes the evaluation of two PDM systems, Windchill and Metaphase, using the design of a single-handed water tap as a case study. The two PDMs were then compared to PROSUS/DDM. PROSUS is the Process-Based Support System proposed by [Blessing 94] using the same case study. The Design Data Model is the product data model that includes PROSUS. The results look promising. PROSUS/DDM is able to capture most design information and structure and present it logically. The design process and product information is related and stored within the DDM structure. The PDMs can capture most design information, but information from early stages of design is stored only as unstructured documentation. Some problems were found with PROSUS/DDM. A proposal is made that may make it possible to resolve these problems, but this will require further research.
Resumo:
Numerous piles are often subjected to the combination of cyclic axial and cyclic lateral loads in service, such as piled foundations for offshore platforms which may suffer swaying and rocking motions owing to wind and wave actions. In this research, centrifuge tests were conducted to investigate the effect of previous cyclic axial loads on the performance of pile groups subjected to subsequent cyclic lateral loads. Different pile installation methods were also applied to study the different behaviour of bored and jacked pile groups subjected to cyclic loads. During lateral load cycling, it is seen that cyclic axial loads to which pile groups were previously subjected could reduce the pile cap permanent lateral displacement in the first lateral load cycle but do not influence the incremental rate of permanent displacement in the following lateral load cycles. Moreover, it is found that previous cyclic axial loads could improve the pile cap cyclic lateral secant stiffness, especially for the pre-jacked pile group. When rocking motions were induced by cyclic lateral loads, pile groups subjected to cyclic axial loads before have smaller permanent settlement than those without the cyclic axial loading effect. The designers of piles that are intended to resist significant lateral loads without excessive deformations in service may wish to deploy cyclic axial preloading, accordingly.