7 resultados para Preus-València-1628-1629
em Cambridge University Engineering Department Publications Database
Resumo:
Widespread approaches to fabricate surfaces with robust micro- and nanostructured topographies have been stimulated by opportunities to enhance interface performance by combining physical and chemical effects. In particular, arrays of asymmetric surface features, such as arrays of grooves, inclined pillars, and helical protrusions, have been shown to impart unique anisotropy in properties including wetting, adhesion, thermal and/or electrical conductivity, optical activity, and capability to direct cell growth. These properties are of wide interest for applications including energy conversion, microelectronics, chemical and biological sensing, and bioengineering. However, fabrication of asymmetric surface features often pushes the limits of traditional etching and deposition techniques, making it challenging to produce the desired surfaces in a scalable and cost-effective manner. We review and classify approaches to fabricate arrays of asymmetric 2D and 3D surface features, in polymers, metals, and ceramics. Analytical and empirical relationships among geometries, materials, and surface properties are discussed, especially in the context of the applications mentioned above. Further, opportunities for new fabrication methods that combine lithography with principles of self-assembly are identified, aiming to establish design principles for fabrication of arbitrary 3D surface textures over large areas. Copyright © 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Resumo:
This paper presents a novel platform for the formation of cost-effective PCB-integrated optical waveguide sensors. The sensor design relies on the use of multimode polymer waveguides that can be formed directly on standard PCBs and commercially-available chemical dyes, enabling the integration of all essential sensor components (electronic, photonic, chemical) on low-cost substrates. Moreover, it enables the detection of multiple analytes from a single device by employing waveguide arrays functionalised with different chemical dyes. The devices can be manufactured with conventional methods of the PCB industry, such as solder-reflow processes and pick-and-place assembly techniques. As a proof of principle, a PCB-integrated ammonia gas sensor is fabricated on a FR4 substrate. The sensor operation relies on the change of the optical transmission characteristics of chemically functionalised optical waveguides in the presence of ammonia molecules. The fabrication and assembly of the sensor unit, as well as fundamental simulation and characterisation studies, are presented. The device achieves a sensitivity of approximately 30 ppm and a linear response up to 600 ppm at room temperature. Finally, the potential to detect multiple analytes from a single device is demonstrated using principal-component analysis. © 1983-2012 IEEE.