260 resultados para Pressure-overload Hypertrophy
em Cambridge University Engineering Department Publications Database
Resumo:
Recent research revealed that microacruators driven by pressurized fluids are able to generate high power and force densities at microscale. Despite these promising properties, fluidic actuators are rare in microsystem technology. The main technological barrier in the development of these actuators is the fabrication of powerful seals with low leakage. This paper presents a seal technology for linear fluidic microacruators based on ferrofluids. An accurate design method for these seals has been developed and validated by measurements on miniaturized actuator prototypes. Our current actuator prototypes are able to seal pressures up to 16 bar without leakage. The actuator has an outside diameter of 2 mm, a length of 13 mm and the actuator is able to generate forces of 0.65 N and a stroke of 10 mm. Moreover, promising properties such as the restoration of the seal after a pressure overload have been observed.
Resumo:
Motivated by recent experimental work, we use first-principles density functional theory methods to conduct an extensive search for low enthalpy structures of C$_6$Ca under pressure. As well as a range of buckled structures, which are energetically competitive over an intermediate range of pressures, we show that the high pressure system ($\gtrsim 18$ GPa) is unstable towards the formation of a novel class of layered structures, with the most stable compound involving carbon sheets containing five- and eight-membered rings. As well as discussing the energetics of the different classes of low enthalpy structures, we comment on the electronic structure of the high pressure compound and its implications for superconductivity.
Resumo:
A low-pressure methane plasma generated by electron cyclotron wave resonance was characterized in terms of electron temperature, plasma density and composition. Methane plasmas were commonly used in the deposition of hydrogenated amorphous carbon thin films. Little variation in the plasma chemistry was observed by mass spectrometry measurements of the gas phase with increasing electron temperature. The results show that direct electron-impact reactions exert greater influence on the plasma chemistry than secondary ion-neutral reactions.