2 resultados para Pressure support

em Cambridge University Engineering Department Publications Database


Relevância:

30.00% 30.00%

Publicador:

Resumo:

The finite element method (FEM) is growing in popularity over the pressure diagram/hand calculation method for analysis of excavation systems in general and deep soil mixing excavations in particular. In this paper, a finite element analysis is used to study the behavior of a deep mixed excavation. Through the use of Plaxis (a FEM software program), the construction sequence is simulated by following the various construction phases allowing for deflections due to strut or anchor installation to be predicted. The numerical model used in this study simulates the soil cement columns as a continuous wall matching the bending stiffness of the actual wall. Input parameters based on laboratory tests and modeling assumptions are discussed. An example of the approach is illustrated using the Islais Creek Transport/Storage Project in San Francisco, California. Copyright ASCE 2006.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A novel temperature and pressure sensor based on a single film bulk acoustic resonator (FBAR) is designed. This FBAR support two resonant modes, which response opposite to the change of temperature. By sealed the back cavity of a back-trench membrane type FBAR with silicon wafer, an on-chip single FBAR sensor suitable for measuring temperature and pressure simultaneously is proposed. For unsealed device, the experimental results show that the first resonant mode has a temperature coefficient of frequency (TCF) of 69.5ppm/K, and the TCF of the second mode is -8.1ppm/K. After sealed the back trench, it can be used as a pressure sensor, the pressure coefficient of frequency (PCF) for the two resonant mode is -17.4ppm/kPa and -6.1 ppm/kPa respectively, both of them being more sensitive than other existing pressure sensors. © 2013 Trans Tech Publications Ltd, Switzerland.